Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

The Future of Machine Learning in Cybersecurity

Machine learning (ML) is a commonly used term across nearly every sector of IT today. And while ML has frequently been used to make sense of big data—to improve business performance and processes and help make predictions—it has also proven priceless in other applications, including cybersecurity. This article will share reasons why ML has risen to such importance in cybersecurity, share some of the challenges of this particular application of the technology and describe the future that machine learning enables.

Why Machine Learning Has Become Vital for Cybersecurity

The need for machine learning has to do with complexity. Many organizations today possess a growing number of Internet of Things (IoT) devices that aren’t all known or managed by IT. All data and applications aren’t running on-premises, as hybrid and multicloud are the new normal. Users are no longer mostly in the office, as remote work is widely accepted.

Not all that long ago, it was common for enterprises to rely on signature-based detection for malware, static firewall rules for network traffic and access control lists (ACLs) to define security policies. In a world with more devices, in more places than ever, the old ways of detecting potential security risks fail to keep up with the scale, scope and complexity.

Machine learning is all about training models to learn automatically from large amounts of data, and from the learning, a system can then identify trends, spot anomalies, make recommendations and ultimately execute actions. In order to address all the new security challenges that organizations face, there is a clear need for machine learning. Only machine learning can address the increasing number of challenges in cybersecurity: scaling up security solutions, detecting unknown attacks and detecting advanced attacks, including polymorphic malware. Advanced malware can change forms to evade detection, and using a traditional signature-based approach makes it very difficult to detect such advanced attacks. ML turns out to be the best solution to combat it.

What Makes Machine Learning Different in Cybersecurity

Machine learning is well understood and widely deployed across many areas. Among the most popular are image processing for recognition and natural language processing (NLP) to help understand what a human or a piece of text is saying.

Cybersecurity is different from other use cases for machine learning in some respects.

Leveraging machine learning in cybersecurity carries its own challenges and requirements. We will discuss three unique challenges for applying ML to cybersecurity and three common but more severe challenges in cybersecurity.

Three Unique Challenges for Applying ML to Cybersecurity

Challenge 1: The much higher accuracy requirements. For example, if you’re just doing image processing, and the system mistakes a dog for a cat, that might be annoying but likely doesn’t have a life or death impact. If a machine learning system mistakes a fraudulent data packet for a legitimate one that leads to an attack against a hospital and its devices, the impact of the mis-categorization can be severe.

Every day, organizations see large volumes of data packets traverse firewalls. Even if only 0.1% of the data is mis-categorized by machine learning, we can wrongly block huge amounts of normal traffic that would severely impact the business. It’s understandable that in the early days of machine learning, some organizations were concerned that the models wouldn’t be as accurate as human security researchers. It takes time, and it also takes huge amounts of data to actually train a machine learning model to get up to the same level of accuracy as a really skilled human. Humans, however, don’t scale and are among the scarcest resources in IT today. We are relying on ML to efficiently scale up the cybersecurity solutions. Also, ML can help us detect unknown attacks that are hard for humans to detect, as ML can build up baseline behaviors and detect any abnormalities that deviate from them.

Challenge 2: The access to large amounts of training data, especially labeled data. Machine learning requires a large amount of data to make models and predictions more accurate. Gaining malware samples is a lot harder than acquiring data in image processing and NLP. There is not enough attack data, and lots of security risk data is sensitive and not available because of privacy concerns.

Challenge 3: The ground truth. Unlike images, the ground truth in cybersecurity might not always be available or fixed. The cybersecurity landscape is dynamic and changing all the time. Not a single malware database can claim to cover all the malware in the world, and more malware is being generated at any moment. What is the ground truth that we should compare to in order to decide our accuracy?

Three ML Challenges Made More Severe in Cybersecurity

There are other challenges that are common for ML in all sectors but more severe for ML in cybersecurity.

Challenge 1: Explainability of machine learning models. Having a comprehensive understanding of the machine learning results is critical to our ability to take proper action.

Challenge 2: Talent scarcity. We have to combine domain knowledge with ML expertise in order for ML to be effective in any area. Either ML or security alone is short of talent; it is even harder to find experts who know both ML and security. That’s where we found it is critical to make sure ML data scientists work together with security researchers, even though they don’t speak the same language, use different methodologies, and have different ways of thinking and different approaches. It is very important for them to learn to work with each other. Collaboration between these two groups is the key to successfully applying ML to cybersecurity.

Challenge 3: ML security. Because of the critical role cybersecurity plays in each business, it is more critical to make sure the ML we use in cybersecurity is secure by itself. There has been research in this area in academics, and we are glad to see and contribute to the industry movement in securing ML models and data. Palo Alto Networks is driving innovation and doing everything to make sure our ML is secure.

The goal of machine learning is to make security more efficient and scalable in an effort to help save labor and prevent unknown attacks. It’s hard to use manual labor to scale up to billions of devices, but machine learning can easily do that. And that is the kind of scale organizations truly need to protect themselves in the escalating threat landscape. ML is also critical for detecting unknown attacks in many critical infrastructures. We can’t afford even one attack, which can mean life or death.

How Machine Learning Enables the Future of Cybersecurity

Machine learning supports modern cybersecurity solutions in a number of different ways. Individually, each one is valuable, and together they are game-changing for maintaining a strong security posture in a dynamic threat landscape.

Identification and profiling: With new devices getting connected to enterprise networks all the time, it’s not easy for an IT organization to be aware of them all. Machine learning can be used to identify and profile devices on a network. That profile can determine the different features and behaviors of a given device.

Automated anomaly detection: Using machine learning to rapidly identify known bad behaviors is a great use case for security. After first profiling devices and understanding regular activities, machine learning knows what’s normal and what’s not.

Zero-day detection: With traditional security, a bad action has to be seen at least once for it to be identified as a bad action. That’s the way that legacy signature-based malware detection works. Machine learning can intelligently identify previously unknown forms of malware and attacks to help protect organizations from potential zero-day attacks.

Insights at scale: With data and application in many different locations, being able to identify trends across large volumes of devices is just not humanly possible. Machine learning can do what humans cannot, enabling automation for insights at scale.

Policy recommendations: The process of building security policies is often a very manual effort that has no shortage of challenges. With an understanding of what devices are present and what is normal behavior, machine learning can help to provide policy recommendations for security devices, including firewalls. Instead of having to manually navigate around different conflicting access control lists for different devices and network segments, machine learning can make specific recommendations that work in an automated approach.

With more devices and threats coming online every day, and human security resources in scarce supply, only machine learning can sort complicated situations and scenarios at scale to enable organizations to meet the challenge of cybersecurity now and in the years to come.

Learn more about machine learning in cybersecurity here.

About Dr. May Wang:

Dr. May Wang is the CTO of IoT Security at Palo Alto Networks and the Co-founder, Chief Technology Officer (CTO), and board member of Zingbox, which was acquired by Palo Alto Networks in 2019 for its security solutions to Internet of Things (IoT).

Internet of Things, IT Leadership


Read More from This Article: The Future of Machine Learning in Cybersecurity
Source: News

Category: NewsSeptember 7, 2022
Tags: art

Post navigation

PreviousPrevious post:Government tech procurement takes three times longer than averageNextNext post:5 steps to move AI beyond buzzwords to deliver true transformative impact

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.