Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

What is your data strategy for an AI future?

As enterprises become more data-driven, the old computing adage garbage in, garbage out (GIGO) has never been truer. The application of AI to many business processes will only accelerate the need to ensure the veracity and timeliness of the data used, whether generated internally or sourced externally.

The costs of bad data

Gartner has estimated that organizations lose an average of $12.9m a year from using poor quality data. And IBM calculate that bad data is costing the US economy more than $3 trillion a year. Most of these costs relate to the work carried out within enterprises checking and correcting data as it moves through and across departments. IBM believes that half of knowledge workers’ time is wasted on these activities.

Apart from these internal costs, there’s the greater problem of reputational damage among customers, regulators, and suppliers from organizations acting improperly based on bad or misleading data. Sports Illustrated and its CEO found this out recently when it was revealed the magazine published articles written by fake authors with AI-generated images. While the CEO lost his job, the parent company, Arena Group, lost 20% of its market value. There’ve also been several high-profile cases of legal firms getting into hot water by submitting fake, AI-generated cases as evidence of precedence in legal disputes.

The AI black box

Although costly, checking and correcting the data used in corporate decision making and business operations has become an established practice for most enterprises. However, understanding what’s going on with some large language models (LLMs) in terms of how they’ve been trained, and on what data and whether the outputs can be trusted, is another matter considering the increasing rate of hallucinations. In Australia, for instance, an elected regional mayor has threatened to sue OpenAI over a false claim made by the company’s ChatGPT that he had served prison time for bribery whereas, in fact, he had been a whistleblower on criminal activity.

Training an LLM on trusted data and adopting approaches such as iterative querying, retrieval-augmented generation, or reasoning are good ways to significantly lessen the dangers of hallucinations, but can’t guarantee they won’t occur.

Training on synthetic data

As companies seek a competitive advantage through deploying AI systems, the rewards may go to those with access to sufficient and relevant proprietary data to train their models. But what about most enterprises without access to such data? Researchers have predicted that high-quality text data used for training LLM models will run out before 2026 if current trends continue.

One answer to this impending problem will be an increased use of synthetic training data. Gartner estimates that by 2030, synthetic data will overtake the use of real data in AI models. However, returning to the GIGO warning, an over-reliance on synthetic data risks accelerating the dangers of inaccurate outputs and poor decision making; such data is only as good as the models that created it. A longer-term danger may arise from “data inbreeding,” as AI models are trained on sub-standard synthetic data that produce outputs, which are then fed back into later models.

Moving with caution

The AI genie is out of the bottle, and while it’ll take more time for the widespread digital revolution promised by some overly-enthusiastic technology vendors and consultants to occur, AI will continue to transform businesses in ways we can’t yet imagine. However, access to reliable and trusted data available at the scale needed by enterprises is already a bottleneck that CIOs and other business leaders have to find ways to remedy before it’s too late.

Artificial Intelligence, CIO, Data Management, IT Leadership, IT Strategy
Read More from This Article: What is your data strategy for an AI future?
Source: News

Category: NewsJanuary 22, 2024
Tags: art

Post navigation

PreviousPrevious post:Savvy CIOs step up to support business hypergrowthNextNext post:Start your zero-trust journey with ZTNA over VPN

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.