Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

What is Salesforce AI Cloud: Should you subscribe?

Salesforce’s new AI Cloud has left many baffled over what it’s all about — how it is different from the competition, what’s new in the offering, and whether one should consider subscribing. Analysts predict there could only be a few takers for the pricey new offering.

The Salesforce AI Cloud combines the company’s previously announced Slack GPT, Tableau GPT, Apex GPT, MuleSoft GPT, Flow GPT, Service GPT, Marketing GPT, and Commerce GPT along with the new Einstein Trust layer and a prompt engineering tool for training large language models (LLMs).

The new, bundled offering, which focuses on generative AI applications, according to CEO Marc Benioff, is based on the unification of Salesforce’s existing technology stack already offered via products including Einstein GPT, Data Cloud, Tableau, Flow and MuleSoft.  

No unified interface for AI Cloud

Although Salesforce is promoting the AI Cloud as a bundled offering via a Cloud Starter Pack, which costs $360,000 annually including a free AI-readiness assessment from Salesforce Professional Services, it does not have a single, unified interface, the company said.

“A lot of the AI cloud will actually manifest as assistants across different cloud offerings that we have, for example, Sales GPT in Sales Cloud, Marketing GPT in Marketing Cloud, and Service GPT in the Service Cloud,” said Jayesh Govindarajan, senior vice president of data science and engineering at Salesforce.

“However, if you are an independent service vendor and you want to create your own prompts, the AI Cloud will offer a separate local console with a low-code experience for training large language models,” Govindarajan said, adding that Salesforce had already signed up with service partners, including Accenture, Deloitte, and PwC.

The AI Cloud’s Starter Pack, according to Forrester principal analyst Liz Herbert, is just one product pricing model that the company is promoting, and “not many Salesforce customers will use that model or will be forced to buy it” as most enterprises already have CRM and other software suites installed.

“If you look at how a typical customer already subscribed to Salesforce, then the bundling is very unlikely to be a common way that someone would buy,” Herbert said, adding that Salesforce was also not very specific on pricing elements for enterprises that want to use just one or more offerings under the AI Cloud. The pricing structure is expected to be aligned, over time, to the usage of the different offerings under the AI Cloud, Herbert said.

Salesforce AI Cloud offers a choice of LLMs

Salesforce’s AI Cloud architecture is built in such a way that it supports multiple LLMs and their training, according to the company.

The AI Cloud architecture is supported by the company’s public cloud infrastructure architecture, Hyperforce, which in turn supports the Data Cloud layer, followed by a layer that hosts multiple LLMs (proprietary or third-party), on top of which resides the company’s new Einstein Trust Layer, the company said.

Salesforce Trusted Cloud Architecture

The Salesforce Trusted AI Cloud architecture consists of multiple layers.

Salesforce

The trust layer separates the Einstein GPT-based generative AI engines — such as Slack GPT, Tableau GPT, Marketing GPT and Commerce GPT — a prompt-engineering tool, and prediction engines, Salesforce said.

The LLMs that the AI Cloud currently offers include third-party models from Amazon Web Services (AWS), Anthropic, and Cohere, among others.

The company has also partnered with OpenAI to use its API for accessing models such as GPT-4, which drive ChatGPT.

Salesforce will also provide its own LLMs, such as CodeGen, COdeT5+, and CodeTF for generative AI implementation in applications, particularly those that aim to increase productivity, bridge the talent gap, and reduce the cost of tech implementation.

A new division, dubbed Salesforce AI Research, has been set up to try to develop new applications for AI by advancing new LLMs or further develop existing ones.

Enterprises, according to Salesforce, can also get their own LLMs trained on their own domain-specific data.

“These models, whether running through Amazon SageMaker or Google’s Vertex AI, will connect directly to AI Cloud through the Einstein GPT Trust Layer. In this scenario, customer data can remain within the customers’ trust boundaries,” the company said.

This isn’t the first time someone has offered these capabilities. Several other prominent technology vendors including AWS and IBM already provide similar offerings in the form of Amazon Bedrock and IBM Watsonx.

How do multiple LLMs work together?

Contrary to practices from some large software vendors that claim to mix different LLMs together to offer generative AI applications, Salesforce’s AI Cloud “chooses the right LLM for the right task,” according to the company.

“The determination of the right LLM is based on outcomes that the system has seen previously,” Govindarajan said, adding that the LLM recommendation engine is learning from the data across all Salesforce deployments.

Giving the example of Marketing GPT creating a landing page, Govindarajan said the system tracks how that landing page has performed, as performance data is also stored inside Salesforce’s Marketing Cloud.

“If the landing page has really worked well, then it will suggest the same LLM it has used to build the landing page to another user who also wants to create a similar landing page,” Govindarajan said.

This same logic is also applied to the multiple flavors of Einstein GPT across different Salesforce Cloud offerings that continuously train the assistants, Salesforce said.

“These generative AI assistants such as Slack GPT or Tableau GPT track if the user ends up following a suggestion. It also tracks the edits or changes to the generated result. This helps it to learn continuously and become more personalized for users,” Govindarajan said.

Einstein GPT Trust layer taps IAM

Salesforce’s Einstein GPT Trust layer is neither new nor differentiated, according to Forrester’s Herbert, who says it follows the same principles that most other vendors are offering in terms of providing security. Like most other vendors, Salesforce uses identity and access management (IAM) rights in the enterprise to safeguard data privacy and security, Salesforce’s Govindarajan said.

Salesforce Trust Layer

Salesforce highlighted security features of its Einstein GPT Trust architecture.

Salesforce

“Once a user runs a query on their system, the technology stack behind these generative AI assistants searches the databases about the attribute that it needs and it has access to, followed by the stack creating a semantic search model based on the knowledge graph of the entire enterprise and the employee requesting the query,” Govindarajan said.

“The retrieved vectorized data is kept within the enterprise’s server, masked, and then fed to the large language model to generate a result or response. So, the stack is essentially copying or imbibing the identity and access management policies that are already existing for that employee,” Govindarajan added.

The Einstein Trust layer’s architecture is also built in such a way that once the query is processed, the information contained in the prompt, or query, is not retained, the company said, adding that the generated result is checked for toxicity and an audit trail log for all prompts is maintained.

Availability

The offerings under the AI Cloud, according to the company, will be made available in different phases, with the Einstein GPT and Service GPT being generally available in June.

The company’s Commerce GPT will be made generally available in July. Other offerings inside the bundle are expected to reach general availability next year after being in pilot for the majority of 2023.

It will be interesting to see how customers react to Salesforce’s new offering, which is more of a bundle of existing offerings than a completely new platform. However, analysts believe that Salesforce AI Cloud will help to enforce more trust in the use of generative AI by enterprises.

“Salesforce recognizes that there are barriers to AI adoption — especially trust. So, they are doubling down on this aspect. The other challenge is that we will have a plethora of LLMs soon — open source, public and private, leading to confusion on which one to deploy. So, Salesforce’s AI Cloud is letting the users plug in the LLM of their choice,” said Sanjeev Mohan, principal analyst at SanjMo.

Artificial Intelligence, Cloud Computing, CRM Systems, Enterprise Applications
Read More from This Article: What is Salesforce AI Cloud: Should you subscribe?
Source: News

Category: NewsJune 13, 2023
Tags: art

Post navigation

PreviousPrevious post:Intelligent Document Processing market grows as important subset of digital transformationNextNext post:10 emerging innovations that could redefine IT

Related posts

SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Consejos para abordar la deuda técnica
May 8, 2025
Training data: The key to successful AI models
May 8, 2025
Bankinter acelera la integración de la IA en sus operaciones
May 8, 2025
The gen AI at Siemens Mobility making IT more accessible
May 8, 2025
Recent Posts
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
  • IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
  • Consejos para abordar la deuda técnica
  • Training data: The key to successful AI models
  • Bankinter acelera la integración de la IA en sus operaciones
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.