Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

We’re not bluffing: Poker and other games are good models of the autonomous enterprise

ChatGPT and other artificial intelligence tools have dominated the conversation lately. Their power to imitate human writing and art is raising concerns that machines could start replacing white-collar workers, the way they took over many blue-collar jobs in the 19th century. We at Digitate are thinking about machines’ role at work too, as we develop software tools to make the autonomous enterprise real.

In our vision of the “autonomous enterprise,” machines (or rather, AI algorithms) fulfill highly repetitive or defined tasks, while strategic, decision-making tasks are driven by humans.

You may think that rule means it’s easy to decide which tasks can be assigned to machines. But as AI and machine learning continue to become more sophisticated and powerful, the dividing line keeps moving. However, the distinguishing factor remains the same: Whether the task under consideration handles data in a defined or undefined way.

  1. Defined: Activities in the defined cluster offer all the information (data) and instructions that you need to perform them. No information is hidden, and the specific instruction to use can be calculated using the data available. Defined data activities are ripe to be machine-managed.
  2. Undefined: Activities in this cluster don’t offer all the necessary information to perform. Intuition, interpretation, analysis, deduction, and guessing are required. Undefined data activities do not adapt well to machine management.
Games can help to understand how to deploy AI

Games that are prime examples of these two clusters are chess and poker, respectively. These categories were first defined by pioneering mathematician and computer scientist John von Neumann (who created a whole field of study with his 1944 book, Theory of Games and Economic Behavior).

I was reminded about von Neumann’s distinction when I attended a speech last fall by scholar and poker champion Maria Konnikova that covered some of the points below.

First, think about a chess game. It has a defined set of pieces with specific roles, a clear set of rules, and a defined space (the chess board). All data is on display for both players, with no hidden information (and no ambiguity about whether a move is legal or not). The total number of all possible moves is very high, but not infinite. This means a machine equipped with a good set of algorithms and enough computing power can beat any chess champion. (In fact, this first happened a quarter-century ago.)

Now think about poker. It also has a defined set of pieces (a deck of cards), a set of rules, and a defined space (the card table). However, not all information is on display; in fact, the central mechanism of poker is to guess which cards your opponents secretly hold, and then successfully predict how they will bet. The game must be played by assumptions, clues, and intuitions about both the cards available and human behavior under specific emotional pressures.

Know when to fold ‘em? That does not compute

Here is the major difference: Machines don’t do well when not all the necessary information is available.

While I realize people might object that AI is progressing and it is mimicking human intelligence, there is no enterprise-grade application of such solutions yet. At least for the next few years, machines still can’t beat us at poker.

End-to-end enterprise operations are closer to poker than chess because often not all data are available. Decision-making is often driven by limited data, information interpretation, and intuition.

Machines are very effective and efficient at managing tasks with a clear set of data and a well-defined set of rules, also known as Standard Operating Procedures. In many enterprises, a wide range of operations from sales to HR can be described with SOPs, and therefore automated. (In IT operations, where I’ve spent my career, 80% of tasks can be machine-managed.)

The typical journey towards an autonomous enterprise usually moves through these phases:

  1. Manual: There is no support by machines; all tasks are executed by humans.
  2. Augmented: There are specific routines that alleviate repetitive tasks, but these routines are triggered by humans. (The most common phase nowadays.)
  3. Automated: The machine reacts to a ticket (human’s request), triggering a specific routine to solve the problem.
  4. Autonomous: Machines suggest and execute actions to prevent incidents or improve overall performance. Usually there is a supervisory period where the human is “teaching” or modeling actions for the machine to take, which later it will execute without supervision.

At Digitate, we built “ignio™,” our flagship AIOps platform for IT and business operations, to become fully autonomous. After its “learning” period ignio’s proprietary machine learning algorithm can filter out excess information generated by the production environment, focusing only on the activities needed to improve or rectify the situation.

Staying one move ahead with autonomous operations

Like any good chess computer program, ignio has a library of over 10,000 customizable moves (use cases) to apply when a situation occurs. Of course, at the beginning ignio will seek human approval before executing the use case. But when the machine learning period is over, ignio is ready to not just self-heal IT problems but optimize all kinds of business processes.

The bottom line: ignio is designed to be an autonomous enterprise solution for IT operations. ignio focuses on the whole landscape, not just single aspects such as data flow, ticket management, or monitoring. ignio is not merely a tool for a specific need, but rather a solution to make the IT autonomous enterprise a reality.

And you can bet your whole stake on that deal.

To see ignio in action, click here to request a demo.

Artificial Intelligence, Machine Learning


Read More from This Article: We’re not bluffing: Poker and other games are good models of the autonomous enterprise
Source: News

Category: NewsFebruary 24, 2023
Tags: art

Post navigation

PreviousPrevious post:What Executives Should Know About Shift-Left SecurityNextNext post:Securing 5G for 2023 and beyond

Related posts

Start small, think big: Scaling AI with confidence
May 9, 2025
CDO and CAIO roles might have a built-in expiration date
May 9, 2025
What CIOs can do to convert AI hype into tangible business outcomes
May 9, 2025
IT Procurement Trends Every CIO Should Watch in 2025
May 9, 2025
‘서둘러 짠 코드가 빚으로 돌아올 때’··· 기술 부채 해결 팁 6가지
May 9, 2025
2025 CIO 현황 보고서 발표··· “CIO, 전략적 AI 조율가로 부상”
May 9, 2025
Recent Posts
  • Start small, think big: Scaling AI with confidence
  • CDO and CAIO roles might have a built-in expiration date
  • What CIOs can do to convert AI hype into tangible business outcomes
  • IT Procurement Trends Every CIO Should Watch in 2025
  • ‘서둘러 짠 코드가 빚으로 돌아올 때’··· 기술 부채 해결 팁 6가지
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.