Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Today’s quantum-inspired approaches for ROI

Quantum computing will change the world — the industry has rightfully accepted this as fact. However, until it does, we must contend with some limitations in the noisy intermediate scale quantum (NISQ) era machines we have today. Many use cases allow us to show customers how to solve complex business problems with actual NISQ quantum computers. Still, we often must accept that it will be some time before we have enough qubits of a high enough fidelity to demonstrate true benchmarkable advantage. Fault-tolerant machines are coming, but organizations must be willing to invest in learning how to code for them and then, depending on the use case, wait up to a couple of years to roll a solution into production. ROI becomes a waiting game.

What if there was a way to get ROI today and still train the workforce for a quantum tomorrow? Enter quantum-inspired approaches. These algorithms, techniques, and even hardware are designed based on the principles of either quantum physics or quantum computing (or both) but run on classical, scalable systems. If this sounds like a contradiction, bear with me a moment; it will all make sense.

Quantum-inspired solutions can train Large Language Models (LLMs) faster and cheaper, provide explainability when making credit decisions, and help spot flaws in production lines. They can accomplish all types of optimization and can perform impressive forecasting. We believe they will shake up the industry quickly this year.

Quantum-inspired algorithms

The heart of quantum computing use cases is solving a classical problem using a quantum algorithm on quantum hardware. For example, if a company handles fraud detection with binary classification in machine learning with a support vector machine (SVM), it would try to solve the same problem on a quantum gate-based machine running a quantum SVM (QSVM). But when it runs out of usable qubits due to hardware limits, it runs out of the ability to add parameters or otherwise improve the model. It’s then necessary to settle for extrapolation to figure out how many qubits will be needed in the future to achieve a potential advantage over classical SVM. With a quantum-inspired algorithm, it’s often possible to skip that last step. Sticking with the SVM example, there exists, in fact, a quantum-inspired SVM (QISVM). The latter runs on classical hardware, which is often deployable at any level of resources needed on the cloud. QISVMs have been around since 2019.

Another promising machine learning approach uses quantum-inspired convolutional neural networks (QICNNs). Since 2021, there have been examples of how these can outperform classical CNNs in some instances. This work builds on earlier quantum-inspired neurons from simple feed-forward networks. CNNs, often used for image recognition or classification, are getting less attention these days. LLMs like GPT are grabbing headlines and are based on transformers instead. However, LLMs may use CNNs as tools. Yes, AI is now using tools!

Other algorithms and use cases venture into optimization. The most common type is quantum-inspired annealing. With an actual quantum annealer, it is possible to map a problem like the traveling salesperson or a portfolio optimization to real qubits and use quantum tunneling to find the lowest energy state or answer. Think of this approach as examining all the peaks and valleys in the U.S. One could drive over them to find the lowest point, but it would be much faster to go straight through those hills. Annealers like the ones built by D-Wave allow for that type of tunneling. With quantum-inspired annealing, one can’t tunnel as with a real annealer but can use thermal fluctuations to hop around quickly, all on classical hardware. It works well for some problems and not others, so trial and error are involved.

Tensor networks—inspired by quantum physics

A tensor is a mathematical object that can represent complex multidimensional data. To create a tensor network, factorize a large tensor into a network of smaller tensors, thereby reducing the number of parameters and computational complexity. The tensors are connected by links that represent relationships between the subsets of data. Tensor networks are inspired by quantum physics, not quantum computing. The networks can model quantum states, including representing entanglement as graphical diagrams.

Tensor networks are becoming popular because of their use in machine learning. They can work with complex data and perform dimensionality reduction and feature extraction—think faster and cheaper compute for ML or Monte Carlo simulations. Notably, they can bring cost and performance benefits to the currently expensive methods for training LLMs.

Digital annealers

A digital annealer is a chip that solves the types of combinatorial optimization problems addressed above but does so by emulating quantum annealing with classical hardware and software techniques. These devices have advantages over conventional and quantum computers as they can handle large-scale problems with thousands of variables and constraints without requiring complex encoding or decomposition techniques. A digital annealer can also operate at room temperature and consume less power than quantum computers that require cryogenic cooling and superconducting circuits.

While we march towards provable quantum advantage, we expect quantum-inspired approaches to solving real business problems with an edge today.

Read the results of our new Global IT Executive Survey: The Innovation vs. Technical Debt Tug-of-War.

Learn more about our emerging technology solutions.

Connect with the Author

Konstantinos Karagiannis
Director, Quantum Computing Services

Digital Transformation
Read More from This Article: Today’s quantum-inspired approaches for ROI
Source: News

Category: NewsMay 23, 2023
Tags: art

Post navigation

PreviousPrevious post:What’s next for network firewalls?NextNext post:5 C-suite bridges every IT leader must build

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.