Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

The success of GenAI models lies in your data management strategy

The rise of generative AI (GenAI) felt like a watershed moment for enterprises looking to drive exponential growth with its transformative potential. However, this enthusiasm may be tempered by a host of challenges and risks stemming from scaling GenAI. As the technology subsists on data, customer trust and their confidential information are at stake—and enterprises cannot afford to overlook its pitfalls.

Yet, it is the quality of the data that will determine how efficient and valuable GenAI initiatives will be for organizations. For these data to be utilized effectively, the right mix of skills, budget, and resources is necessary to derive the best outcomes. Such data also has to be placed in environments, be it private or public clouds, that can meet both business requirements and technical needs.

In light of these considerations, it has become a growing imperative for business and IT teams to collaborate and align their business priorities for AI use. How will organizations wield AI to seize greater opportunities, engage employees, and drive secure access without compromising data integrity and compliance? These are vital concerns that companies must address and communicate across every level of the business.

While it may sound simplistic, the first step towards managing high-quality data and right-sizing AI is defining the GenAI use cases for your business. Depending on your needs, large language models (LLMs) may not be necessary for your operations, since they are trained on massive amounts of text and are largely for general use. As a result, they may not be the most cost-efficient AI model to adopt, as they can be extremely compute-intensive.

Conversely, smaller models, such as domain- or enterprise-specific ones, may deliver more value at a much lower cost, while offering more accurate, context-specific insights than LLMs.

Optimizing GenAI with data management

More than ever, businesses need to mitigate these risks while discovering the best approach to data management. That’s why many enterprises are adopting a two-pronged approach to GenAI. The first is to experiment with tactical deployments to learn more about the technology and data use. This is known as data preparation, a short-term measure that identifies data sets and defines data requirements. These data will be cleansed, labelled, and anonymized, with data pipelines built to integrate them within an AI model.

The data preparation process should take place alongside a long-term strategy built around GenAI use cases, such as content creation, digital assistants, and code generation. Known as data engineering, this involves setting up a data lake or lakehouse, with their data integrated with GenAI models. On top of extending the capabilities of the GenAI data repository, such a data lake should support organizations in enhancing their data management to establish the most suitable posture for GenAI.

Choosing the right infrastructure for your data

One of the most crucial decisions business leaders can make is choosing the right infrastructure to support their data management strategy. Computational requirements, such as the type of GenAI models, number of users, and data storage capacity, will affect this choice.

Look for a holistic, end-to-end approach that will allow enterprises to easily adopt and deploy GenAI, from the endpoint to the data center, by building a powerful data operation. An example is Dell Technologies Enterprise Data Management. This includes Dell Data Lakehouse for AI, a data platform built upon Dell’s AI-optimized hardware, and a full-stack software suite for discovering, querying, and processing enterprise data. From eliminating data silos to offering data teams self-service access for crafting high-quality data products, the Dell Data Lakehouse can help businesses accelerate their AI outcomes.

But achieving breakthrough innovations with AI is only possible with unlocking the value of data. This is where data solutions like Dell AI-Ready Data Platform come in handy. Purpose-built for running AI at any scale, it unlocks the value of unstructured data so enterprises can access, prepare, train, and fine-tune their AI efficiently—on-premises, at the edge, or in any cloud—through a single point of data access and at peak performance.

In particular, Dell PowerScale provides a scalable storage platform for driving faster AI innovations. By offering an energy-efficient storage foundation for running AI workloads at high performance, enterprises can get swift business insights alongside multicloud agility, built-in federal-grade security, and storage efficiency. We see this in McLaren Racing, which successfully translated data into speed through AI. The company has boosted its car performance and speed via real-time data analyses of at least 100,000 parameters from more than 300 onboard sensors.

Find out more about effective data management for your GenAI deployments.




Read More from This Article:
The success of GenAI models lies in your data management strategy
Source: News

Category: NewsOctober 10, 2024
Tags: art

Post navigation

PreviousPrevious post:“홍해 해저케이블 절단 사고, 예상보다 더 큰 영향··· 트래픽 최대 70% 중단” RETN 보고서NextNext post:15 domande sulla trasformazione digitale alle quali ogni CIO deve rispondere

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.