Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

The State of Artificial Intelligence at the Manufacturing Edge

As the chief engineer and head of the department for digital transformation of manufacturing technologies at the Laboratory for Machine Tools and Production Engineering (WZL) within RWTH Aachen University, I’ve seen a lot of technological advancements in the manufacturing industry over my tenure. I hope to help other manufacturers struggling with the complexities of AI in manufacturing by summarizing my findings and sharing some key themes.

The WZL has been synonymous with pioneering research and successful innovations in the field of production technology for more than a hundred years, and we publish over a hundred scientific and technical papers on our research activities every year. The WZL is focused on a holistic approach to production engineering, covering the specifics of manufacturing technologies, machine tools, production metrology and production management, helping manufacturers test and refine advanced technology solutions before putting them into production at the manufacturing edge. In my team, we have a mix of computer scientists, like me, working together with mathematicians and mechanical engineers to help manufacturers use advanced technologies to gain new insights from machine, product, and manufacturing data.

Closing the edge AI insight gap starts and ends with people 

Manufacturers of all sizes are looking to develop AI models they can use at the edge to translate their data into something that’s helpful to engineers and adds value to the business. Most of our AI efforts are focused on creating a more transparent shop floor, with automated, AI-driven insights that can:

  • Enable faster and more accurate quality assessment
  • Reduce the time it takes to find and address process problems
  • Deliver predictive maintenance capabilities that reduce downtime

However, AI at the manufacturing edge introduces some unique challenges. IT teams are used to deploying solutions that work for a lot of different general use cases, while operational technology (OT) teams usually need a specific solution for a unique problem. For example, the same architecture and technologies can enable AI at the manufacturing edge for various use cases, but more often than not, the way to extract data from edge OT devices and systems that move their data into the IT systems is unique for each case. 

Unfortunately, when we start a project, there usually isn’t an existing interface for getting data out of OT devices and into the IT system that is going to process it. And each OT device manufacturer has its own systems and protocols. In order to take a general IT solution and transform into something that can answer specific OT needs, IT and OT teams must work together at the device level to extract meaningful data for the AI model. This will require IT to start speaking the language of OT, developing a deep understanding of the challenges OT faces daily, so the two teams can work together. In particular, this requires a clear communication of divided responsibilities between both domains and a commitment to common goals. 

Simplifying data insights at the manufacturing edge

Once IT and OT can work together to successfully get data from OT systems to the IT systems that run the AI models, that’s just the beginning. A challenge I see a lot in the industry is when an organization still uses multiple use-case-specific architectures and pipelines to build their AI foundation. The IT systems themselves often need to be upgraded, because legacy systems can’t handle the transmission needs of these very large data sets. 

Many of the companies we work with throughout our various research communities, industry consortia or conferences, such as WBA, ICNAP or AWK2023 — especially the small to medium manufacturers — ask us specifically for technologies that don’t require highly specialized data scientists to operate. That’s because manufacturers can have a hard time justifying the ROI if a project requires adding one or more data scientists to the payroll. 

To answer these needs, we develop solutions that manufacturers can use to get results at the edge as simply as possible. As a mechanical engineering institute, we’d rather not spend a lot of time doing research about infrastructure and managing IT systems, so we often seek out partners like Dell Technologies, who have the solutions and expertise to help reduce some of the barriers to entry for AI at the edge.

For example, when we did a project that involved high- frequency sensors, there was no product available at the time that could deal with our volume and type of data. We were working with a variety of open-source technologies to get what we needed, but securing, scaling, and troubleshooting each component led to a lot of management overhead.

We presented our use case to Dell Technologies, and they suggested their Streaming Data Platform. This platform reminds me of the way the smartphone revolutionized usability in 2007. When the smartphone came out, it had a very simple and intuitive user interface so anyone could just turn it on and use it without having to read a manual. 

The Streaming Data Platform is like that. It reduces friction to make it easier for people who are not computer scientists to capture the data flow from an edge device without having technical expertise in these systems. The platform also makes it easy to visualize the data at a glance, so engineers can quickly achieve insights.

When we applied it to our use case, we found that it deals with these data streams very naturally and efficiently, and it reduced the amount of time required to manage the solution. Now, developers can focus on developing the code, not dealing with infrastructure complexities. By reducing the management overhead, we can use the time saved to work with data and get better insights.

The future of AI at the manufacturing edge

With all of this said, one of the biggest challenges I see overall with AI for edge manufacturing is the recognition that AI insights are an augmentation to people and knowledge — not a replacement. And that it is much more important for people to work together in managing and analyzing that data to ensure that the end goal of getting business insights to serve a particular problem are being met. 

When manufacturers use many different solutions pieced together to find insights, it might work, but it’s unnecessarily difficult. There are technologies out there today that can remedy these challenges, it’s just a matter of finding them and checking them out. We’ve found that the Dell Streaming Data Platform can capture data from edge devices, analyze the data using AI models in near real time, and feed insights back to the business to add value that benefits both IT and OT teams.

Learn more

If you are interested in current challenges, trends and solutions to empower sustainable production, find out more at the AWK2023 where more than a thousand participants from production companies all around the world come together to discuss solutions for green production.

Find out more about AI at the manufacturing edge solutions from Dell Technologies and Intel.  

***

Intel® Technologies Move Analytics Forward

Data analytics is the key to unlocking the most value you can extract from data across your organization. To create a productive, cost-effective analytics strategy that gets results, you need high performance hardware that’s optimized to work with the software you use.

Modern data analytics spans a range of technologies, from dedicated analytics platforms and databases to deep learning and artificial intelligence (AI). Just starting out with analytics? Ready to evolve your analytics strategy or improve your data quality? There’s always room to grow, and Intel is ready to help. With a deep ecosystem of analytics technologies and partners, Intel accelerates the efforts of data scientists, analysts, and developers in every industry. Find out more about Intel advanced analytics.

IT Leadership


Read More from This Article: The State of Artificial Intelligence at the Manufacturing Edge
Source: News

Category: NewsNovember 23, 2022
Tags: art

Post navigation

PreviousPrevious post:What You Need to Know About Digital Innovation NowNextNext post:The CIO and CISO – Leadership and collaboration conversation

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.