Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Successful Early Adopters of AI Reveal Best Practices for Design, Deployment and Use

Developing and deploying artificial intelligence (AI) solutions efficiently and successfully in businesses requires a new set of skills, for both individuals and organizations.  In a recent study, over half of companies that have successfully deployed AI applications have embraced an enterprise-wide strategy that is inclusive, open, and pragmatic, using homegrown AI models 90% of the time. They have spent time understanding and documenting consistent and effective ways of rolling out projects and processes to drive efficiency. 

AI is Booming. Wanted: More People & Best Practices.

AI in business is advancing at a brisk pace. The market is forecast to grow at a Compound Annual Growth Rate (CAGR) of 36.2% between 2022 and 2027, when it will reach $407 billion, according to a recent study by MarketsandMarkets. But the report cautioned that: “The limited number of AI technology experts is the key restraint to the market.” The same lack of enough skilled personnel, along with established processes for deploying AI, was also cited in a recent global study of 2000 businesses by IDC.

Thirty-one percent of companies surveyed were actively using AI while the others were still in prototyping, experimentation, or evaluation stages. Significantly, companies using AI – considered early adopters – have integrated their AI platforms with the rest of their data center and cloud environments instead of running AI in silos used by separate groups. They have defined holistic, organization-wide AI strategies or visions along with clearly defined policies, guidelines, and processes. 

Another characteristic of these early AI adopters is that they use internal staff instead of external vendors to deploy AI applications. They also prioritize training line of business managers to use outcomes from algorithms and to tap these stakeholders to help guide new projects. This connection between IT and business leaders results in a high degree of support from C-level executives on down. 

AI Environments are Complex

To provide the massive compute power and data storage resources required for AI applications, businesses typically use systems with graphical processing units (GPUs) that accelerate applications running on the CPU by offloading some of the compute-intensive and time-consuming portions of the code. High-speed storage, parallel processing, in-memory computing, and containerized applications running in clusters are other techniques that are part of AI solution environments. 

Working with such complex technology requires the right training and experience. According to Datamation, there are 55,000 jobs currently listed under “artificial intelligence” on LinkedIn. Many if not most of these jobs (e.g., AI engineer, data scientist, AI/ML architect, AIOps/MLOps engineer) require years of education and advanced degrees. Yet the IDC study makes clear how much more effective AI projects are with these personnel designing models and collaborating with stakeholders in-house.

Scaling an AI Environment for Critical Healthcare Diagnoses

A leading pathology diagnostics firm in the U.S., that works with top biopharmaceutical and medical organizations around the world, has developed its own best practices for designing and deploying AI applications. Project teams at the firm include IT professionals, machine learning engineers, and data scientists who specialize in the biomedical industry.  Line of business managers also help guide the development of algorithms, 90% of which are developed based on the use of inhouse models. 

Many team members work primarily alone, then collaborate to deliver complex projects. With fluid, continually evolving project requirements, the company uses the Agile software development process that anticipates the need for flexibility in a finished product. To ensure that the technology they use (including GPU-based compute with high-speed and object-based storage and file-based access to Kubernetes clusters) is kept up-to-date and future proofed, the firm relies on close partnerships with vendors to review product roadmaps and anticipate and incorporate new features.

Agile development requires a pragmatic approach. IT managers at the firm insist that developers evaluate their work critically in the design phase and be willing to start from scratch if an approach isn’t working. In IDC’s survey, the companies actively using AI take an average of three months to build machine learning and deep learning models where AI laggards commit a fraction of that time. Deployment in AI early adopter companies like the pathology diagnostics firm, however, is accelerated because developers have already done their homework and obtained buy-in on models and validation from data scientists on technology purchases. 

Summary of Best Practices for Effective Use of AI 

As more C-level and line of business executives recognize and prioritize the use of AI as an effective tool to enhance competitiveness and drive efficiencies, the barriers to adoption have also become clear. Companies achieving success with AI have invested in people with skills and expertise. They have established vendor partnerships to future-proof solutions by staying up-to-date on evolving product roadmaps. They have fostered collaborative and highly flexible development environments that can alter course based on changing business dynamics. Using mostly homegrown models, they are committed to taking the time required to get the design of algorithms right before moving to well-defined established deployment processes.  Finally, AI development teams mentor business stakeholders, working with them to uncover and apply actionable insights from data analytics. 

Download the new IDC report to learn more about what is separating AI leaders and laggards. 

***

Intel® Technologies Move Analytics Forward

Data analytics is the key to unlocking the most value you can extract from data across your organization. To create a productive, cost-effective analytics strategy that gets results, you need high performance hardware that’s optimized to work with the software you use.

Modern data analytics spans a range of technologies, from dedicated analytics platforms and databases to deep learning and artificial intelligence (AI). Just starting out with analytics? Ready to evolve your analytics strategy or improve your data quality? There’s always room to grow, and Intel is ready to help. With a deep ecosystem of analytics technologies and partners, Intel accelerates the efforts of data scientists, analysts, and developers in every industry. Find out more about Intel advanced analytics.

Artificial Intelligence


Read More from This Article: Successful Early Adopters of AI Reveal Best Practices for Design, Deployment and Use
Source: News

Category: NewsSeptember 30, 2022
Tags: art

Post navigation

PreviousPrevious post:Modernizing Your Mid-Range Storage? Here are 5 Keys to SuccessNextNext post:High Performance Data Analytics Gains Momentum Across Diverse Enterprise Computing Environments

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.