Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Strategies to combat GenAI implementation risks

CIOs are under pressure to integrate generative AI into business operations and products, often driven by the demand to meet business and board expectations swiftly. But many IT departments might not thoroughly consider the prerequisites for successful GenAI deployment, and moving quickly can lead to costly errors and implementation failures. We examine the risks of rapid GenAI implementation and explain how to manage it.

As organizations worldwide prepare to spend over $40 billion in core IT (technology budgeted and overseen by central IT) on GenAI in 2024 (per IDC’s Worldwide Core IT Spending for GenAI Forecast, 2023-2027, January 2024), there’s an urgent need to manage the risks associated with these investments. This massive expenditure reflects the rapid adoption of GenAI technologies across various industries, but it also raises significant concerns about the preparedness of IT departments and the greater business to handle the complex requirements for successful implementation.

Notable GenAI blunders

Recent incidents highlight the potential pitfalls of hasty GenAI adoption:

  • ChatGPT falsely accused a law professor of harassment.
  • Air Canada was ordered to compensate a customer misled by its chatbot.
  • Google had to pause its Gemini AI model due to inaccuracies in historical images.
  • Samsung employees leaked proprietary data to ChatGPT.
  • A ChatGPT bug exposed user conversations to other clients.

These examples underscore the severe risks of data spills, brand damage, and legal issues that arise from the “move fast and break things” mentality. Mark Zuckerberg’s famous quote should serve as a cautionary tale rather than a directive.

Key risks in GenAI implementation

Organizations face a myriad of risks when deploying GenAI, including but not limited to:

  • AI and data poisoning
  • Bias and limited explainability
  • Brand threat
  • Copyright infringement
  • Cost overruns
  • Environmental impact
  • Governance and security challenges
  • Integration and interoperability issues
  • Litigation and regulatory compliance

IDC research shows that two-thirds of companies are overspending on their cloud budgets (IDC CIO Quick Poll, December 2022), and similar budget overruns are expected with GenAI. Additionally, issues like bias, confabulation, and performance inaccuracies are prevalent. The decentralization of GenAI implementation by business staff without IT oversight further complicates governance.

Vendor understanding and preparedness

A significant portion of CEOs (45%) and CIOs (66%) believe that technology vendors don’t fully grasp the risks associated with AI (IDC Worldwide CEO Survey and IDC CIO Quick Poll, January 2024). This skepticism necessitates rigorous questioning of vendors about privacy, data protection, security, and the use of training data. Effective partnering requires transparency and clear documentation from vendors.

GenAI is increasingly being integrated into existing enterprise applications. When considering GenAI implementation risk, organizations can’t forget that “implementation” can be their vendors adding GenAI functionality to products the organization already owns. About 35% of applications currently use some form of AI/ML with that number projected to grow to 50% within two years (Cloud Pulse 2Q23, IDC, August 2023 IDC).

This is a risk that many organizations don’t consider. For instance, Microsoft is embedding its Copilot into Windows 11, and companies like ServiceNow and Box are incorporating GenAI capabilities. It’s crucial for organizations to understand how these integrations work, their implications on data privacy, and the conditions under which they operate.

Organizations should prepare a comprehensive checklist of questions to evaluate these integrations and discuss the implications with their vendors. Organizations need to determine whether to allow or upgrade to the functionality depending on the privacy, security, accuracy, and transparency implications of the embedded implementation.

Five components of GenAI implementation

In an effort to mitigate GenAI implementation risk, consider the following five elements:

  1. Technology: systems, services, networking, and platforms underpinning GenAI (could be cloud, on-premises, or hybrid)
  2. Processes: bias mitigation, security, model transparency, data ingestion, and privacy
  3. Talent: technical, data, and model skills to be obtained through training, hiring, or partnering
  4. Governance: oversight, accountability, legal, statutory, and ethical expertise.Multi-disciplinary
  5. Data: good, known, understood data relevant to the use case

IDC, 2024

Assessing AI maturity

Understanding AI maturity is crucial for successful GenAI implementation. Organizations must realistically assess their AI maturity levels relative to the project requirements to avoid overcommitting resources. This maturity can be built, procured, or acquired through partnerships, with knowledge transfer being a critical component of any external collaboration. The key elements to understand when assessing maturity are technology, process, talent governance, and data – not surprisingly, the five elements in the checklist above.

The graphic below describes AI maturity levels as defined by IDC’s MaturityScape model.

IDC MaturityScape: Artificial Intelligence 2.0, May 2022

When examining use cases, choose ones that match your AI maturity (or the maturity you can procure with third parties). Don’t get over your skis and attempt a use case that your organization is not aligned to support.

Use case categories and their requirements

GenAI use cases fall into three main categories:

  1. Productivity or efficiency: These are low-risk tasks like summarizing reports or creating RFPs, requiring minimal customization and talent. They correlate to a low AI maturity and typically bring limited benefits.
  2. Functional: These are medium-risk tasks like hyper-personalized marketing, necessitating good data and available in-house talent. They correlate to a moderate AI maturity and can bring moderate benefits.
  3. Industry or transformational: These are high-risk, high-impact use cases like generative drug discovery, requiring significant investment in talent and data quality. These can be competitive differentiators or create a competitive moat. They correlate to a high AI maturity and can bring big benefits.

Build versus buy: A balanced approach

Organizations should adopt a mix of build-and-buy strategies tailored to their specific business and technology contexts. This balanced approach ensures that projects align with organizational maturity and value requirements. The figure below illustrates how the use cases map onto maturity and value and then the related implementation options.

Generative AI: Approaches for Competitive Advantage, IDC, October 2023

Conclusion

Navigating the risks of GenAI requires a comprehensive understanding of an organization’s AI maturity, a balanced build-and-buy approach, and rigorous vendor evaluation. By addressing these challenges and leveraging the right infrastructure, organizations can harness the transformative potential of GenAI while minimizing risks.

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory services, and events for the technology markets. IDC is a wholly owned subsidiary of International Data Group (IDG Inc.), the world’s leading tech media, data, and marketing services company. Recently voted Analyst Firm of the Year for the third consecutive time, IDC’s Technology Leader Solutions provide you with expert guidance backed by our industry-leading research and advisory services, robust leadership and development programs, and best-in-class benchmarking and sourcing intelligence data from the industry’s most experienced advisors. Contact us today to learn more.

Get more advice from IDC on managing the risks of GenAI and build versus buy for GenAI.

Daniel Saroff is group vice president of consulting and research at IDC, where he is a senior practitioner in the end-user consulting practice. This practice provides support to boards, business leaders, and technology executives in their efforts to architect, benchmark, and optimize their organization’s information technology. IDC’s end-user consulting practice utilizes our extensive international IT data library, robust research base, and tailored consulting solutions to deliver unique business value through IT acceleration, performance management, cost optimization, and contextualized benchmarking capabilities.

Daniel also leads the CIO/end-user research practice at IDC. This practice provides guidance to business and technology executives on how to leverage technology to achieve innovative and disruptive business outcomes. IDC’s research enables clients to create grounded business and technology strategies and empowers IT leaders to deliver services and innovation that drive business growth and success.

Daniel has over 20 years of experience in senior-level positions in both consulting organizations and delivering technology. Prior to joining IDC, he served as the CIO for a major Massachusetts state agency, where he led the agency through cloud migrations, digital transformation, technology modernization, enterprise platform reengineering, security in-depth and zero trust, and defense and response to a major cyberattack. He also held consulting positions at both Forrester and Gartner and was an IT director at a major aerospace and defense company. Before joining IDC, he owned a private IT management consultancy.


Read More from This Article: Strategies to combat GenAI implementation risks
Source: News

Category: NewsJuly 10, 2024
Tags: art

Post navigation

PreviousPrevious post:バックオフィスのDX化で経営効率を上げるシステムリサーチNextNext post:Cybersecurity GenAI features: Are they worth the money?

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.