Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Shell sees AI as fuel for its sustainability goals

Energy giants are under significant pressure by governments and consumers to reduce carbon emissions. For multinational oil and gas company Shell, artificial intelligence may be a key catalyst for fulfilling that long-term goal.

The London-headquartered energy company’s ongoing digital transformation, fueled by a hybrid cloud platform and Databricks data lake house, includes a mix of AI technologies aimed at optimizing business efficiencies and profits and, over time, reducing its carbon footprint.

“AI has become a very core part of our overall digital transformation journey,” says Shell’s chief AI guru Dan Jeavons, noting that Shell works with several AI companies, including Microsoft and C3.ai, but has been in a close partnership with Databricks since 2015. Roughly 20 Databricks employees are assigned to the Shell account.

Jeavons, who has served as vice president of computational science and digital innovation at Shell for just six months, is the former general manager of data science at Shell and has been knee deep in data science since 2015.

In his new role, reporting to Shell Group CIO Jay Crotts, Jeavons is tasked with employing AI as well as emerging technologies such as blockchain, IoT, and edge computing to overhaul Shell’s future technology strategy and help steer its commitment to reduce its carbon footprint to become a net-zero emissions energy business by 2050.

Gartner AI analyst Anthony Mullens says Shell’s AI implementations are beyond what most other companies are doing. “Shell is over the hump in terms of initial experimentation right across the organization,” says Mullens, pointing to Shell’s Center for Excellence and participation in OpenAI.

Jeavons’ group has several hundred data scientists using AI — mostly on Databricks’ Spark-based platform — writing algorithms to execute tasks such as improving the cycle times of subsurface processing, optimizing the performance of assets, predicting when and if various pieces of equipment might fail, as well as improving offerings to customers.

“Given the threat of climate change, we need to move to a lower carbon energy system and digital plays a key role in that,” Jeavons says, noting many of the CO2 monitoring data streams will flow through Databricks AI platform. “Digital technology is one of the core levers that we can pull in order to significantly reduce the CO2 footprint of the energy system.”

According to Jeavons, Shell’s use of digital technology reduced the CO2 emissions of one liquefied natural gas (LNG) facility by as much as 130 kilotons per year — equivalent to removing 28,000 US vehicles off the road for a year.

“Many of the people that work for us have a sense of compelling purpose actually applying AI to try to accelerate energy transition,” he says. “But I’m not going to pretend it’s easy.”

Data is the foundation

As part of its digital transformation, Shell relies on two public clouds, Microsoft Azure and AWS, as well as Docker and Kubernetes containerization technologies, to run increasingly advanced workloads for various aspects of its $210 billion oil and gas business.

Dan Jeavons, vice president of computational science and digital innovation, Shell

Dan Jeavons, VP of computational science and digital innovation, Shell

Shell

A key facet of that strategy, Jeavons says, is the company’s foundational data layer — a pool from which multiple tools and technologies can access data systematically.

“Having a dual-cloud strategy means you need some consistency as to how you want to manage and integrate your data. Now of course, not all data is going to be in one place. You have a variety of databases; everybody does,” Jeavons says. “But from an analytics perspective, more and more, we’re consolidating certain types of data into an integrated lake house architecture based on Databricks.”

On the analytics side, integrating data into a common layer in Databricks’ Delta Lake and using Python in a common platform allows simple queries and classical reporting query integration with visualization tools such as Power BI.

But on the AI front, it “also allows you to run the machine learning workloads all on the same platform,” Jeavons says. “For me, that’s been a step change.”

For example, Shell has integrated all its global time-series data — information such as temperature, pressure, a particular piece of equipment — into a common cloud based on Delta Lake, enabling the energy giant to keep its finger on the pulse of most global assets, including data from refineries, plants, upstream facilities, winds farms, and solar panels. “It’s 1.9 trillion rows of data aggregated today, which is a huge amount globally,” Jeavons says. “We measure everywhere.”

Shell’s AI efforts also include performing failure predictions and assessing the integrity of its energy assets by using machine vision to identify corrosion. “We’re also using AI to develop technology which can optimize the assets and make them run more efficiently at scale and optimize based on historical performance,” Jeavons says, noting that, while much of Shell’s AI magic is due the implementation of its data lake, none of it could be achieved without cloud advancements.

“Really, the key thing has been the maturing of the clouds and the ability to remove some additional layers that we had [in order] to take data directly from the plants and stream it into the cloud. That’s been helpful in driving both data analytics but also the AI strategy,” he says.

The road ahead

In total, Shell has about 350 professional data scientists and roughly 4,000 professional software engineers working remotely and/or in one of Shell’s hubs in Bangalore, India; the UK; the Netherlands, and Houston, Texas.

Aside from the cloud and data lake house, Shell has also moved to advanced development tools such as Microsoft Azure DevOps and is integrating GitHub into its developers’ ways of working. It is also deploying more mature code screening tools for the cloud, running “proper” CI/CD workflows and monitoring “north” of 10,000 pieces of equipment globally using AI as part of its remote surveillance centers, Jeavons says.

But it is the development of a common lake house architecture that has made the most difference, giving Shell “an integrated data layer that provides visibility of all the data across our business” in a consistent way, Jeavons say.

“We were a very early adopter of Delta,” he says. “For a while, it was more in proof-of-concept mode than in deployed at scale load. It’s really been in the past 18 months where we’ve seen a step change and we’ve been running quite hard.”

Change management, however, remains one of the company’s biggest challenges.

“How do you embed the technology into the business process and make it usable and a part of what happens every day and developing algorithms that work? I’m not going to underplay how difficult it is. It’s non-trivial,” Jeavons says. “It’s tougher to develop the adoption [of AI] at scale. It’s still very much a journey and we’ve made some strides but there’s a lot more to do.”


Read More from This Article: Shell sees AI as fuel for its sustainability goals
Source: News

Category: NewsFebruary 28, 2022
Tags: art

Post navigation

PreviousPrevious post:2022 is the Year of the EdgeNextNext post:Stopping ransomware in its tracks

Related posts

How Booking.com measures the impact of GenAI on developer productivity
June 13, 2025
How Booking.com measures the impact of AI on developer productivity
June 13, 2025
Pentagon’s $11B IT modernization struggles with cost overruns, delays, and cybersecurity gaps
June 13, 2025
How emerging technologies are redefining enterprise architecture
June 13, 2025
Custom AI models help MWAA deliver better airport experiences
June 13, 2025
Blending tech and business to transform a retail icon
June 13, 2025
Recent Posts
  • How Booking.com measures the impact of AI on developer productivity
  • How Booking.com measures the impact of GenAI on developer productivity
  • Pentagon’s $11B IT modernization struggles with cost overruns, delays, and cybersecurity gaps
  • How emerging technologies are redefining enterprise architecture
  • Custom AI models help MWAA deliver better airport experiences
Recent Comments
    Archives
    • June 2025
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.