Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Run Generative AI on-premises, with a cloud experience

IT leaders are grappling with a critical question as they seek to deploy generative AI workloads today: Is it better for my business to run GenAI applications in the public cloud or on-premises?

The question inspires spirited debate from both sides of the hosting aisle. Most IT leaders say, “It depends.” True, but it also begs some unpacking.

As you prepare to run a new workload, your first inclination may be to build, test, and launch it in a public cloud. And why not? The approach has probably helped you reduce time to deployment and even accelerated innovation.

So naturally, as you consider rolling out a GenAI service you may be tempted to build and launch it in your preferred public cloud. You believe it will offer greater agility and speed faster than if you do it in your corporate datacenter—or anywhere else.

Normally nobody would blink, blame you, or tell you to think twice. Except this workload is a bit different.

As always, you’ll base your workload placement decision on security, performance, latency, cost, and other variables, including the size and complexity of the large (or small) language model you plan to run, as well as the environments you plan to deploy it to.

Yet given the myriad known unknowns of deploying GenAI models—and the fact that the value you may derive from it may be intrinsically linked to your corporate data—your ability to control this new technology might trump all other factors.

Start your GenAI journey in your datacenter

Using an off-the-shelf or open source model as you build, test, and tune your app on-premises you can bring the AI to your data, affording you greater processing efficiency while retaining control over your data.

Say you work in a regulated sector such as finance and you wish to create a GenAI service that surfaces product information. Strict data security and privacy mandates may govern if and how you work with AI services in the public cloud. Running a GenAI app on premises ensures that all data remains within the organization’s environment, reducing the risk of data breaches while respecting regulatory requirements.

Plus, your ability to control access to the GenAI instance could help alleviate “shadow AI” concerns, which are growing among organizations. Protecting your IP while preventing that Wild West is good governance.

Some scenarios require real-time interactions with the AI model, such as chatbots that support sales or customers. Running the LLM on-premises can minimize latency since data doesn’t have to travel to remote cloud servers and back. This can result in faster response times while enabling you to better monitor latency and throughput, as well as the accuracy of your model. Fifty-five percent of IT decision makers cited performance as a top reason for running GenAI workloads on-premises, according to a Dell survey of IT managers.1

Costs present another tricky variable. Operating a GenAI app in the public cloud can yield sticker shock as usage grows—or if the implementation isn’t properly scoped. Maybe you’re looking to stand up a paired programming environment in which humans write code while GenAI puts it through the QA ringer—or vice versa.

You get greater control over how many resources you consume on-premises, which will help you curb costs. That’s no small consideration, as 35% of IT leaders Dell surveyed cited cost as a key reason for deploying their GenAI workload on-premises.2

The cloud experience delivered on-premises

Maybe your GenAI journey starts on premises but once you’ve tested and trained your app, checking it for performance, bias, and other issues, you decide to also launch it in a public cloud. Eighty-two percent of IT-decision-makers indicated they were most interested in taking an on-premises or hybrid approach to building their GenAI solution, according to a Dell Generative AI Pulse survey.3

Hybrid cloud models naturally provide more choices. In that vein, did you know there are other ways to enjoy a cloud experience in-house? You can build a bridge between your on-premises estate and public clouds to get the best of both operating environments.

Dell APEX Cloud Platforms enable you to enjoy the agility and flexibility of cloud services, with the security, performance, and control of an on-premises solution. These platforms, which include Microsoft Azure, VMware, and Red Hat OpenShift, provide a unified cloud experience, allowing you to procure more infrastructure as required while enabling optimal deployment of GenAI apps, such as digital assistants and other tools that surface business information.

That way you can spend more of your time and energy accelerating your GenAI journey to achieve business outcomes that will help you drive digital transformation.

Learn more about Dell APEX Cloud Platforms.

1Dell internal survey of IT decision makers, August 2023
2Dell internal survey of IT decision makers, August 2023 
3Generative AI Pulse Survey, Dell Technologies, Sept. 2023

Artificial Intelligence
Read More from This Article: Run Generative AI on-premises, with a cloud experience
Source: News

Category: NewsOctober 26, 2023
Tags: art

Post navigation

PreviousPrevious post:With generative AI, IT must deliver knowledge…not just technologyNextNext post:Why IT needs to be in the driver’s seat with generative AI

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.