Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Real-time Data, Machine Learning, and Results: The Evidence Mounts

By Bryan Kirschner, Vice President, Strategy at DataStax

From delightful consumer experiences to attacking fuel costs and carbon emissions in the global supply chain, real-time data and machine learning (ML) work together to power apps that change industries.

New research co-authored by Marco Iansiti, the co-founder of the Digital Initiative at Harvard Business School, sheds further light on how a data platform with robust real-time capabilities contribute to delivering competitive, ML-driven experiences in large enterprises.

It’s yet another key piece of evidence showing that there is a tangible return on a data architecture that is cloud-based and modernized – or, as this new research puts it, “coherent.”

Data architecture coherence

In the new report, titled “Digital Transformation, Data Architecture, and Legacy Systems,” researchers defined a range of measures of what they summed up as “data architecture coherence.” Then, using rigorous empirical analysis of data collected from Fortune 1000 companies, they found that every “yes” answer to a question about data architecture coherence results in about 0.7–0.9 more machine learning use casesacross the company. Moving from the bottom quartile to the top quartile of data architecture coherence leads to more intensive machine learning capabilities across the corporation, and about14% more applications and use cases being developed and turned into products.

They identified two architectural elements for processing and delivering data: the “data platform,” which covers the sourcing, ingestion, and storage of data sets, and the “machine learning (ML) system,” which trains and productizes predictive models using input data.

They conclude that what they describe as coherent data platforms “deliver real-time capabilities in a robust manner:they can incorporate dynamic updates to data flows and return instantaneous results to end-user queries.”

These kinds of capabilities enable companies like Uniphore to build a platform that applies AI to sales and customer interactions to analyze sentiment in real-time and boost sales and customer satisfaction.

Putting data in the hands of the people that need it

The study results don’t surprise us. In the latest State of the Data Race survey report, over three quarters of the more than 500 tech leaders and practitioners  (78%) told us real-time data is a “must have.” And nearly as many (74%) have ML in production.

Coherent data platforms also can “combine data from various sources, merge new data with existing data, and transmit them across the data platform and among users,” according to Iansiti and his co-author Ruiqing Cao of the Stockholm School of Economics.

This is critical, because at the end of the day, competitive use cases are built, deployed, and iterated by people: developers, data scientists, and business owners – potentially collaborating in new ways at established companies.

The authors of the study call this “co-invention,” and it’s a key requirement. In their view a coherent data architecture “helps traditional corporations translate technical investments into user-centric co-inventions.” As they put it, “Such co-inventions include machine learning applications and predictive analytics embedded across the organization in various business processes, which increase the value of work conducted by data users and decision-makers.”

We agree and can bring some additional perspective on the upside of that kind of approach. In The State of the Data Race 2022 report, two-thirds (66%) of respondents at organizations that made a strategic commitment to leveraging real-time data said developer productivity had improved. And, specifically among developers, 86% of respondents from those organizations said, “technology is more exciting than ever.” That represents a 24-point bump over those organizations where real time data wasn’t a priority.

The focus on a modern data architecture has never been clearer

Nobody likes data sprawl, data silos, and manual or brittle processes – all aspects of a data architecture that hamper developer productivity and innovation. But the urgency and the upside of modernizing and optimizing the data architecture keeps coming into sharper focus.

For all the current macroeconomic uncertainty, this much is clear: the path to future growth depends on getting your data architecture fit to compete and primed to deliver real time, ML-driven applications and experiences.

Learn more about DataStax here.

About Bryan Kirschner:

Bryan is Vice President, Strategy at DataStax. For more than 20 years he has helped large organizations build and execute strategy when they are seeking new ways forward and a future materially different from their past. He specializes in removing fear, uncertainty, and doubt from strategic decision-making through empirical data and market sensing.

Data Architecture, IT Leadership


Read More from This Article: Real-time Data, Machine Learning, and Results: The Evidence Mounts
Source: News

Category: NewsOctober 3, 2022
Tags: art

Post navigation

PreviousPrevious post:New Pricing Platform Ensures Swift Delivery of Emergency Medical SuppliesNextNext post:Magna’s multicloud fuels auto industry’s future

Related posts

SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Consejos para abordar la deuda técnica
May 8, 2025
Training data: The key to successful AI models
May 8, 2025
Bankinter acelera la integración de la IA en sus operaciones
May 8, 2025
The gen AI at Siemens Mobility making IT more accessible
May 8, 2025
Recent Posts
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
  • IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
  • Consejos para abordar la deuda técnica
  • Training data: The key to successful AI models
  • Bankinter acelera la integración de la IA en sus operaciones
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.