Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

IDC chief research officer: GenAI, from experimentation to adoption

As the chief research officer at IDC, I lead a global team of analysts who develop research and provide advice to help our clients navigate the technology landscape. 

Back in 2023, at the CIO 100 awards ceremony, we were about nine months into exploring generative artificial intelligence (genAI). We were full of ideas and possibilities. Fast forward to 2024, and our data shows that organizations have conducted an average of 37 proofs of concept, but only about five have moved into production. It’s been a year of intense experimentation. 

Now, the big question is: What will it take to move from experimentation to adoption? The key areas we see are having an enterprise AI strategy, a unified governance model and managing the technology costs associated with genAI to present a compelling business case to the executive team. 

Our research indicates a scramble to identify and experiment with use cases in most business functions within an enterprise. The challenge is that each function within an organization might identify five or six use cases. When you look across the entire organization, the organization may be running dozens of disconnected use cases. To determine which ones will impact the business, organizations must develop an enterprise use case roadmap that prioritizes the highest impact use cases AI use cases. We encourage leaders to look for “AI super use cases” — those that will deliver the most significant business outcomes for the investment. Consider which ones will make your organization more resilient, will support overall organizational health and key goals such as innovation, adaptability or sustainability. 

This approach requires a partnership between business and IT. Our data shows that nearly 40% of organizations don’t have close collaboration between these two areas, which makes it harder to move use cases into production. It’s time to get organized, partner with the business and create that enterprise use case roadmap. 

Build or buy? 

Another area where enterprises have gained clarity is whether to build, compose or buy their own large language model (LLM). The path of least resistance is to purchase genAI capabilities through existing applications. However, not all use cases are being addressed in commercially available apps. More will be in the future, but for now, most organizations need to do some composing. This involves grounding a commercially available or open-source LLM with your own data. Our research shows that very few organizations are building their own LLMs. A year ago, many thought they had to, but now they recognize there are other options. 

Another realization enterprises had is just how important data is to AI initiatives, especially those composing their AI services.  Organizations are finding they have outdated data or incomplete data sets. Companies tend to invest heavily in the data plane — where data is stored, organized and managed. Now, they need to invest in data engineering to prepare data for grounding and fine-tuning their AI models. 

Predictions around future growth and concerns for AI 

There is a lot at stake for organizations. AI will reshape enterprises and industries. Within the enterprise, AI will act as an assistant, advisor, agent or all three, changing business processes, applications and daily work tasks. Industries will innovate, engage customers and deliver value in fundamentally new ways. But without a vision and enterprise AI strategy, backed with a use case roadmap and strong business cases, this cannot be recognized. We expect some organizations will make the AI pivot in 2025 out of the experimentation phase. In doing so, they will begin recognizing the exponential benefits of their collective AI use cases starting in 2027. For those organizations that do not pivot in 2025, their experimentation phase will slip into 2026 as they fall behind their competitors. The difference between these two paths will be significant, impacting productivity gains, speed of innovation, customer relationships and financials. It’s crucial to keep moving forward on this journey. 

The good news for CIOs is that you have an opportunity to take a leadership role with AI, especially as organizations mitigate risk by keeping AI model development centralized. Don’t forget to consider the support employees will need to adopt AI and develop a change management plan to bring everyone along. 

Meredith Whalen is IDC’s Chief Research Officer and a member of the senior management team. She is responsible for IDC’s Research Global Product Line of subscription products for tech buyers, suppliers and investors, and the analysts responsible for delivering them. Meredith sets IDC’s annual thought leadership theme and research agenda for IDC’s global team of 1,300+ analysts.


Read More from This Article: IDC chief research officer: GenAI, from experimentation to adoption
Source: News

Category: NewsDecember 19, 2024
Tags: art

Post navigation

PreviousPrevious post:Director de Sistemas y Tecnologías, los perfiles más codiciados; hasta 85.000 euros anualesNextNext post:Climate tech opportunities for IT pros

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.