Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

How Nvidia became a trillion-dollar company

Nvidia’s transformation from an accelerator of video games to an enabler of artificial intelligence (AI) and the industrial metaverse didn’t happen overnight—but the leap in its stock market value to over a trillion dollars did.

It was when Nvidia reported strong results for the three months to April 30, 2023, and forecast that its sales could jump by 50% in the following fiscal quarter, that its stock market valuation soared, catapulting it into the exclusive trillion-dollar club alongside well-known tech giants Alphabet, Amazon, Apple, and Microsoft. The once-niche chipmaker, now a Wall Street darling, was becoming a household name.

Investor exuberance waned later that week, dropping the chip designer out of the trillion-dollar club in short order, just as former members Meta and Tesla had fallen before it, but it was soon back in the club, and in mid-June, investment bank Morgan Stanley forecast Nvidia’s value could continue to rise another 15% before the year is out.

Unlike most of its trillion-dollar tech cohorts, Nvidia has less consumer brand awareness to go on, making its Wall Street leap more mysterious to Main Street. How Nvidia got here and where it’s going next sheds light on how the company has achieved that valuation, a story that owes a lot to the rising importance of specialty chips in business—and accelerating interest in the promise of generative AI.

Graphics driver

Nvidia started out in 1993 as a fabless semiconductor firm designing graphics accelerator chips for PCs. Its founders spotted that generating 3D graphics in video games—then a fast-growing market—placed highly repetitive, math-intensive demands on PC central processing units (CPUs). They realized those calculations could be performed more rapidly in parallel by a dedicated chip rather than in series by the CPU, an insight that led to the creation of the first Nvidia GeForce graphic cards.

For many years, graphics drove Nvidia’s business; even 30 years on, graphics cards for gaming, including the GeForce line, still account for over a third of its revenue, making it the biggest vendor of discrete graphics cards in the world. (Intel makes more graphics chips, though, because most of its CPUs ship with the company’s own integrated graphics silicon.)

Along the way, other uses for the parallel-processing capabilities of Nvidia’s graphical processing units (GPUs) emerged, solving problems with a similar matrix arithmetic structure to 3D-graphics modelling.

Still, software developers seeking to leverage graphics chips for non-graphical applications had to wrangle their calculations into a form that could be sent to the GPU as a series of instructions for either Microsoft’s DirectX graphics API or the open-source OpenGL (Open Graphics Library).

Then in 2006 Nvidia introduced a new GPU architecture, CUDA, that could be programmed directly in C to accelerate mathematical processing, simplifying its use in parallel computing. One of the first applications for CUDA was in oil and gas exploration, processing the mountains of data from geological surveys.

The market for using GPUs as general-purpose processors (GPGPUs) really opened up in 2009, when OpenGL publisher Khronos Group released Open Computing Language (OpenCL).

Soon, hyperscalers such as Amazon Web Services added GPUs to some of their compute instances, making scalable GPGPU capacity available on demand, thereby lowering the barrier of entry to compute-intensive workloads for enterprises everywhere.

AI, crypto mining, and the metaverse

One of the biggest drivers of demand for Nvidia’s chips in recent years has been AI, or, more specifically, the need to perform trillions of repetitive calculations to train machine learning models. Some of those models are truly gargantuan: OpenAI’s GPT-4 is said to have over 1 trillion parameters. Nvidia was an early supporter of OpenAI, even building a special compute module based on its H100 processors to accelerate the training of the large language models (LLMs) the company was developing.

Another unexpected source of demand for the company’s chips has been cryptocurrency mining, the calculations for which can be performed faster and in a more energy-efficient manner on a GPU than on a CPU. Demand for GPUs for cryptocurrency mining meant that graphics cards were in short supply for years, making GPU manufacturers like Nvidia similar to pick-axe retailers during the California gold rush.

Although Nvidia’s first chips were used to enhance 3D gaming, the manufacturing industry is also interested in 3D simulations, and its pockets are deeper. Going beyond the basic rendering and accelerating code libraries of OpenGL and OpenCL, Nvidia has developed a software platform called Omniverse—a metaverse for industry used to create and view digital twins of products or even entire production lines in real-time. The resulting imagery can be used for marketing or collaborating on new designs and manufacturing processes.

Efforts to stay in the $1T club

Nvidia is driving forward on many fronts. On the hardware side, it continues to sell GPUs for PCs and some gaming consoles; supplies computational accelerators to server manufacturers, hyperscalers, and supercomputer manufacturers; and makes chips for self-driving cars. It’s also in the service business, operating its own cloud infrastructure for pharmaceutical firms, manufacturing, and others. Plus, it’s a software vendor, developing generic libraries of code that anyone can use to accelerate calculations on Nvidia hardware, as well as more specific tools such as its cuLitho package to optimize the lithography stage in semiconductor manufacturing.

But interest in the latest AI tools such as ChatGPT (developed on Nvidia hardware), among others, is driving a new wave of demand for Nvidia hardware, and prompting the company to develop new software to help enterprises develop and train the LLMs on which generative AI is based.

Nvidia is also pitching AI Foundations, its cloud-based generative AI service, as a one-stop shop for enterprises that might lack resources to build, tune, and run custom LLMs trained on their own data to perform tasks specific to their industry. The move, announced in March, may be a savvy one, given rising business interest in generative AI, and it pits the company in direct competition with hyperscalers that also rely on Nvidia’s chips.

Nvidia AI Foundations models include NeMo, a cloud-native enterprise framework; Picasso, an AI capable of generating images, video, and 3D applications; and BioNemo, which deals in molecular structures, making generative AI particularly interesting for accelerating drug development, where it can take up to 15 years to bring a new drug to market. Nvidia says its hardware, software, and services can cut early-stage drug discovery from months to weeks. Amgen and AstraZeneca are among the pharmaceutical firms testing the waters, and with US pharmaceutical firms alone spending over $100 billion a year on R&D, more than three times Nvidia’s revenue, the potential upside is clear.

Pharmaceutical development is moving faster, but the road toward widespread adoption of another of Nvidia’s target markets is less clear: self-driving cars have been “just around the corner” for years, but testing and getting approval for use on the open road is proving even more complex than getting approval for a new drug.

Nvidia gets two bites at this market. One is building and running the virtual worlds in which self-driving algorithms are tested without putting anyone at risk. The other is the cars themselves. If the algorithms make it out of the virtual world and onto the roads, cars will need chips from Nvidia and others to process real-time imagery and perform myriad calculations needed to keep them on course. This is the smallest market segment Nvidia breaks out in its quarterly results: just $300 million, or 4% of overall sales, in the three months to April 30, 2023. But it’s a segment that’s more than doubling each year.

When it reported those results, Nvidia made an ambitious forecast: that its revenue for the following fiscal quarter, ending July 31, would be over 50% higher. We’ll have to wait until August 23 to see whether it lived up to its expectations.

Artificial Intelligence, C Language, Cryptocurrency, GPUs, Manufacturing Systems, Nvidia, Software Deployment, Software Development
Read More from This Article: How Nvidia became a trillion-dollar company
Source: News

Category: NewsJuly 18, 2023
Tags: art

Post navigation

PreviousPrevious post:10 most difficult-to-fill IT roles — and how to address the gapNextNext post:Hard-earned advice for nurturing high-performing IT teams

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.