Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

How ML Ops Can Help Scale Your AI and ML Models

 
CIOs realize data is the new currency. But, if you can’t use your data as a differentiator to gain new insights, develop new products and services, enter new markets, and better meet the needs of existing ones, you’re not fully monetizing your data. That’s why building and deploying artificial intelligence (AI) and machine learning (ML) models into a production environment quickly and efficiently is so critical.

Yet many enterprises are struggling to accomplish this goal. To better understand why, let’s look back at what has stalled AI in the past and what continues to challenge today’s enterprises.

Yesterday’s challenge: Lack of power, storage, and data

AI and ML have been around far longer than many companies realize, but until recently, businesses couldn’t really put those technologies to use. That’s because companies didn’t have sufficient computing power, storage capabilities, or enough data to make an investment in developing ML and AI models worthwhile.

In the last two decades though, computing power has dramatically increased. Coupled with the advent of the Internet and the development of new technologies such as IPv6, VOIP, IoT, and 5G, companies are suddenly awash in more data than ever before. Gigabytes, terabytes, and even petabytes of data are now being created daily, making vast volumes of data readily available. Combined with increases in storage technologies, the main limitations to using AI and ML models are now problems of the past.

Today’s challenge: Model building is complicated

Due to the removal of those constraints, companies have been able to show the promise of AI and ML models in areas such as improving medical diagnoses, developing sophisticated weather models, controlling self-driving cars, and operating complex equipment. Without question, in those data-intensive realms, the return from and impact of those models has been astonishing. 

However, the initial results from those high-profile examples have shown that while AI and ML models can work effectively, companies without the large IT budgets required for the development of AI and ML models may not be able to take full advantage of them. The barrier to success has become the complex process of AI and ML model development. The challenge, therefore, becomes not whether a company should use AI and ML, but rather, can they build and use AI and ML models in an affordable, efficient, scalable, and sustainable way?

The reality is that most companies don’t have the tools or processes in place to effectively allow them to build, train, deploy, and test AI and ML models. And then repeat the process again and again. For AI and ML models to be scalable, consistency over time is important.

To really use AI and ML models to their fullest, as well as reap their benefits, companies must find ways to operationalize the model development processes. Those processes must also be repeatable and scalable to eliminate creating unique solutions for each individual use case (which is another challenge to the use of AI and ML models today). The one-off mentality of use case creation is not financially sustainable, especially when developing AI and ML models, nor is it a model that drives business success.

In other words, they need a framework. Fortunately, there’s a solution.

The Solution: ML Ops

Over the last few years, the discipline known as machine learning operations, or ML Ops, has emerged as the best way for enterprises to manage the challenges involved with developing and deploying AI and ML models. ML Ops is focused on the processes involved in developing an AI or ML model (developing, training, testing, etc.), the hand-offs between the various teams involved in model development and deployment, the data used in the model itself, and how to automate these processes to make them scalable and repeatable.

ML Ops solutions help the enterprise focus on governance and regulatory requirements, provide increased automation, and increase the quality of the production model. An ML Ops solution also provides the framework necessary to eliminate having to create new processes every time a model is developed—making it repeatable, reliable, scalable, and efficient. In addition to the benefits listed, many ML Ops solutions may also provide integrated tools, so developers can easily and repeatedly build and deploy AI and ML models.

ML Ops solutions lets enterprises develop and deploy those AI and ML models systematically and affordably.

How HPE can help

HPE’s machine learning operations solution, HPE Ezmeral ML Ops, addresses the challenges of operationalizing AI and ML models at enterprise scale by providing DevOps-like speed and agility, combined with an open-source platform that delivers a cloud-like experience. It also includes pre-packaged tools to operationalize the ML lifecycle from pilot to production and supports every stage of the ML lifecycle. These include data preparation, model build, model training, model deployment, collaboration, and monitoring—with capabilities that enable users to run all their machine learning tasks on a single unified platform.

HPE Ezmeral ML Ops provides enterprises with an end-to-end data science solution that has the flexibility to run on premises, in multiple public clouds, or in a hybrid model. It’s able to respond to dynamic business requirements in a variety of use cases, speeds up data model timelines, and helps reduce time to market.

To learn more about HPE Ezmeral ML Ops and how it can help your business, visit hpe.com/mlops or contact your local sales rep.

____________________________________

About Richard Hatheway

hatheway
Richard Hatheway is a technology industry veteran with more than 20 years of experience in multiple industries, including computers, oil and gas, energy, smart grid, cyber security, networking and telecommunications. At Hewlett Packard Enterprise, Richard focuses on GTM activities for HPE Ezmeral Software.

 
 
 
 


Read More from This Article: How ML Ops Can Help Scale Your AI and ML Models
Source: News

Category: NewsApril 8, 2022
Tags: art

Post navigation

PreviousPrevious post:Want to Unlock China’s Potential? You First Have to Scale the Regulatory Great WallNextNext post:The CIO’s missing priority

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.