Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Governance for responsible AI: The easy things and the hard ones

By Charna Parkey and Steven Tiell, DataStax.

Companies developing and deploying AI solutions need robust governance to ensure they’re used responsibly. But what exactly should they focus on? Based on a recent DataStax panel discussion, “Enterprise Governance in a Responsible AI World,” there are a few hard and easy things organizations should pay attention to when designing governance to ensure the responsible use of AI.

The easy things: A clear understanding of AI terminology and risks

There’s a host of things that can be established with relative ease early in an organization’s AI journey. Simply establishing shared terminology and a common background of understanding throughout the organization is an important foundational step toward inclusion. From developers to the C-suite, an organization that understands core AI concepts and terminology is in a better position to discuss it and innovate with AI.

Arriving at this shared understanding might require AI and/or digital literacy training. During this training, it’s also important to explain the limitations of AI. What is this model good at and what should be the boundaries on how and where it’s applied? Understanding limitations helps to prevent misuse down the line.

This clarity in communication should extend outside of the company as well. Companies, especially startups, should hone skills in explaining their technology in plain language, even with small teams. Not only does this help to ground assumptions about what is and isn’t possible, but it also prepares companies to have conversations with and potentially even educate stakeholder groups such as customers and even future board members.

As part of this process, it’s important to consider the context of each individual or group being engaged. Ethical considerations differ across industries like healthcare, banking, and education. For instance, it might be helpful for students to share work to achieve learning outcomes, but it’s illegal for a bank to share stock transactions from one customer to other groups. This context is important not just to meet your audience where they are, but also to understand risks that are specific to the context of your AI application.

The harder stuff: Security and external side effects

From here, things start to get harder. The risks present when the AI was deployed may not be the same risks a year later. It’s important to constantly evaluate new potential threats and be ready to update governance processes as a result. In addition to the existing potential for AI to cause harm, generative AI introduces new vectors for harm that require special attention, such as prompt engineering attacks, model poisoning, and more.

Once an organization has established routine monitoring and governance of deployed models, it becomes possible to consider expanded and indirect ethical impacts such as environmental damage and societal cohesion. Already with generative AI, compute needs and energy use have radically increased. Unmanaged, society-scale risks become more abundant in a generative AI world.

This attention to potential harm can also be a double-edged sword. Making models open source increases access, but open models can be weaponized by bad actors. Open access must be balanced with the likelihood for harm. This extends from training data to model outputs, and any feature stores or inference engines between those. These capabilities can improve model performance to adapt to a changing context in real time—but they’re also yet another vector for attack. Companies must weigh these tradeoffs carefully.

Broader externalities also need to be managed appropriately. Social and environmental side effects often get discounted, but these issues become business problems when supply chains falter or public/customer trust erodes. The fragility of these systems cannot be understated, particularly in light of recent disruptions to supply chains from COVID-19 and increasingly catastrophic natural disasters.

In light of these societal-level risks, governments have AI in their regulatory crosshairs. Every company working with AI, small and large, should be preparing for impending AI regulations, even if they seem far off. Building governance and ethics practices now prepares companies for compliance with forthcoming regulations.

Responsibly governing AI requires constantly evolving frameworks that are attuned to new capabilities and risks. Following the straightforward—and sometimes challenging—practices above will put organizations on the right path as they shape how they can benefit from AI, and how it can benefit society.

Learn how DataStax powers generative AI applications.

About Charna Parkey, Real-Time AI product and strategy leader, DataStax

DataStax

Charna Parkey is the Real-Time AI product and strategy leader at DataStax and member of the WEF AI Governance Alliance’s Sustainable Applications and Transformation working group championing responsible global design and release of transparent and inclusive AI systems. She has worked with more than 90% of the Fortune 100, to implement AI products at scale.

About Steven Tiell, VP Strategy, DataStax

DataStax

Steven Tiell is VP Strategy at DataStax and serves as Nonresident Senior Fellow at the Atlantic Council GeoTech Center. In 2016, Steven founded Accenture’s Data Ethics and Responsible Innovation practice, which he led until joining DataStax last year. Steven has catalyzed dozens of AI transformations and was a Fellow at the World Economic Forum, leading Digital Trust and Metaverse Governance initiatives.

Artificial Intelligence, Machine Learning
Read More from This Article: Governance for responsible AI: The easy things and the hard ones
Source: News

Category: NewsSeptember 8, 2023
Tags: art

Post navigation

PreviousPrevious post:What is SAFe? A framework for scaling business agilityNextNext post:Is AI in the enterprise ready for primetime? Not yet.

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.