Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Generative AI hallucinations: What can IT do?

Generative AI adoption is growing in the workplace—and for good reason. Studies indicate the potential for significant productivity gains: workers saw some writing projects speed up by 40% in a study released by Science and developers were able to complete certain tasks up to 30% faster according to McKinsey research. But the double-edged sword to these productivity gains is one of generative AI’s known Achilles heels: its ability to occasionally “hallucinate,” or present incorrect information as fact.

Hallucinations can be problematic for organizations racing to adopt generative AI. In a perfect world, generative AI outputs do not need to be rigorously scrutinized. But in the rare instances where erroneous information from GenAI hallucinations makes it out to the public, the results can be embarrassing and can erode brand trust and credibility.

What IT can do about generative AI hallucinations

Fortunately, there are actions IT organizations can take to reduce the risk of generative AI hallucinations—either through decisions they make within their own environments or how internal users are trained to use existing tools. Here are a range of options IT can use to get started.

Use retrieval-augmented generation (RAG)

Retrieval-augmented generation (RAG) is a technique that allows models to retrieve information from a specified dataset or knowledge base. This approach allows you to use a large language model to generate answers based on relevant documents you provided from your data source which can result in more relevant and accurate outputs. What’s valuable about RAG is that it can be reasonably easy to stand up and can be done on existing infrastructure with code snippets readily available online.

Consider fine-tuning a large language model

Retrieval-augmented generation can be a useful technique for getting more accurate outputs, but it doesn’t impact the underlying large language model you’re working with. For that, you’d need to move on to fine-tuning. This is a supervised process that involves retraining a large language model with data so that it generates content more accurately based on that data. RAG and fine-tuning do not need to be an either/or proposition; in fact, a fine-tuned model paired with RAG has been shown to significantly reduce hallucinations.

Employ prompt engineering

Prompt engineering is the fancy term for using the question-and-answer process of interacting with a large language model to train it. Using certain prompt engineering techniques can train models to respond in more predictable ways and can increase the accuracy of problem-solving. However, prompt engineering is limited in that it does not have the ability to increase the knowledge of the base model—in many ways, it comes down to the trial-and-error of knowing what prompts deliver good results and then using them reliably.

Teach generative AI best practices to everyday users

This last step cannot be neglected: ensure users have adequate training in getting the most from large language models and are using best practices like peer reviews and fact-checking of content. Teach rank-and-file users how to author prompts in ways that are more likely to result in high-quality outcomes. For example, are they using clear language and providing adequate context within their prompts? Likewise, once they have an output, are they reviewing the contents with internal subject matter experts and peers? These commonsense practices can reduce errors and ensure content is up to snuff before it is seen publicly.

The antidote to hallucinations: Where IT goes from here

As organizations consider their generative AI journeys, the risks of AI hallucinations may be a cause for concern, but with the right strategies in place, IT can reduce those risks and realize generative AI’s promise. It’s likely many IT organizations will employ a number of these approaches, for example, model training or augmentation alongside user education for the broadest possible coverage. And it’s also worth noting these strategies are not exhaustive and what works for each organization will depend on specific use cases and available resources. IT organizations will also want to consider what deployment options will give them the right mix of security and customization to meet their needs.

No matter where you are in your GenAI journey, the steps above can help. And if you need more guidance, enlisting the support of partners can get you there faster. At Dell, we work with organizations every day to help them identify use cases, put solutions in place, increase adoption, and even train internal users to speed up innovation.

To learn more, visit dell.com/ai.

Artificial Intelligence
Read More from This Article: Generative AI hallucinations: What can IT do?
Source: News

Category: NewsNovember 7, 2023
Tags: art

Post navigation

PreviousPrevious post:Huawei’s Vision for Intelligent Networking Unveiled at GITEX Global 2023NextNext post:Salesforce Automotive Cloud adds Einstein Studio, Fleet Management

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.