Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Generative AI: 5 enterprise predictions for AI and security — for 2023, 2024, and beyond

Trends/Predictions:

  • Enterprise use of AI tools will only grow, with industries like manufacturing leading the charge
  • Enterprises will secure AI/ML applications to stay ahead of risk
  • Enterprises will seek visibility and intelligent access controls around AI and ML applications
  • AI will become a key component of enterprise data protection
  • AI will transform how enterprises understand risk and security from the top down

We’ve entered the era of widespread adoption of generative AI tools. From IT, to finance, marketing, engineering, and more, AI advances are causing enterprises to re-evaluate their traditional approaches to unlock the transformative potential of AI. Our recent data analysis of AI/ML trends and usage confirms this: enterprises across industries have substantially increased their use of generative AI, across many kinds of AI tools.

What can enterprises learn from these trends, and what future enterprise developments can we expect around generative AI? Between our research and dozens of conversations with customers and partners, there are a number of trends that we can expect to see this year, in 2024, and onward.

Enterprise use of AI tools will only grow, with industries like manufacturing leading the charge

Our research shows that mirroring the broader AI trend, enterprises across industry verticals sharply increased their use of AI from May 2023 to June 2023, with sustained growth through August 2023. We see that the majority of AI/ML traffic is being driven by manufacturing, which may offer a glimpse into the rapid innovation and transformation driven by Industry 4.0. Indeed, its substantial engagement in these tools highlights the likely key role that AI and ML will play in the future of manufacturing. 

Industry Vertical trend

Zscaler

Other industries, like finance, have shown steep growth in the use of AI/ML tools, largely driven by the adoption of generative AI chat tools like ChatGPT and Drift. Indeed, since June 2023, the finance sector has experienced continuous growth in these areas.

ChatGPT Transaction Trend by Industry Vertical

Zscaler

Unsurprisingly, OpenAI.com has emerged as a driving force, accounting for 36% of the AI/ML traffic we observed. Of 36% observed, 58% of traffic to that domain can be attributed to ChatGPT. However, when it comes to the most popular tool in use, Drift takes the crown, followed by ChatGPT and tools like LivePerson and Writer. As new AI use cases continue to emerge, it is likely that we will see enterprises adopt AI — not merely in leveraging generative AI chat tools, but as a core driver of business that can create competitive differentiation.

Top Applications

Zscaler

Enterprises will work to secure AI/ML applications to stay ahead of risk

Our research also found that as enterprises adopt AI/ML tools, subsequent transactions undergo significant scrutiny. Overall, 10% of AI/ML-related transactions are blocked across the Zscaler cloud using URL filtering policies. Here, the technology and finance industries are leading the charge, accounting for more than half of blocked transactions. Interestingly, Drift holds the distinction of being the most blocked, as well as most used, AI application. In all likelihood, we will see other industries take their lead to ensure that enterprises can minimize the risks associated with AI and ML tools.

Blocked Transactions by Vertical

Zscaler

The risks of leveraging AI and ML tools

As we discussed in a recent blog, the risks of using generative AI tools in the enterprises are significant. In general, they fall into two buckets:

1. The release of intellectual property and non-public information

Generative AI tools can make it easy for well-meaning users to leak sensitive and confidential data. Once shared, this data can be fed into the data lakes used to train large language models (LLMs) and can be discovered by other users. For example, a backend developer who queries ChatGPT, “Can you take this [my source code for a new product] and optimize it?” Or a sales team member inputs the prompt, “Can you create sales trends based on the following Q2 pipeline data?” In both cases, sensitive information or protected IP may have leaked outside the organization.

2. The data privacy and security risks of AI applications themselves

Not all AI applications are created equal. Terms and conditions can vary widely among the hundreds of AI/ML applications in popular use. Will your queries be used to further train an  LLM? Will your data be mined for advertising purposes? Will it be sold to third parties? These are questions enterprises must answer. Similarly, the security posture of these applications can also vary, both in terms of how data is secured and the overall security posture of the company. Enterprises must be able to account for each of these factors, assigning risk scores among hundreds of AI/ML applications, to secure their use.

Enterprises will seek visibility and intelligent access controls around AI and ML applications

As a corollary to this last trend, it’s likely that enterprises will continue to seek precise controls for their AI/ML applications. For many enterprises, visibility will be the starting point of creating an AI security policy, followed by the adoption of intelligent, granular access controls to ensure that users can embrace these tools in an approved, secure fashion. There are a number of key questions that enterprises will want to answer, including:

  1. Do I have deep visibility into employee AI app usage? Enterprises will seek complete visibility into the AI/ML tools in use. In addition, they will monitor corporate traffic and transactions to these applications.
  1. Can I allow access to only certain AI apps? Enterprises will want to allow granular access to approved AI applications at the department, team, and user levels. Moreover, they will want to use URL filtering to broadly block access to unsafe or unwanted AI/ML tools. In addition, enterprises may consider the ability to allow ‘cautioned’ access—where users may use a specific tool, but they are coached around the risks and limitations of using it.
  1. Which AI applications protect private data? Enterprise must understand the security posture of the AI apps that employees are using, among the hundreds of AI tools in everyday use. In order to appropriately configure access policies, enterprises must understand which of these applications will protect their data and assess the security of the organizations creating/managing these applications.
  1. Can I prevent data from leaving the organization? Preventing data loss will be a key factor in embracing generative AI. Enterprises will likely gravitate to data loss prevention (DLP) technologies that allow them to create policies preventing the leakage of sensitive data like source code, structured data like credit card information, and PII. In a more sophisticated fashion, it will also become more common for enterprises to block risky user actions when using generative AI tools that are key contributors to data loss — like copy & paste, and uploads and downloads.

AI and ML will become a key component of enterprise data protection

As enterprises recognize the need to prevent data loss across their footprint, it is likely that they will increasingly leverage AI as a means of identifying and protecting their data. In conversations with customers about preventing data leakage, one challenge that frequently surfaces is that enterprises often lack visibility into all the places where their critical data lives and are thus unable to classify and protect it using technologies like DLP. DLP remains an attractive option in the context of generative AI — we have a video here showing how DLP blocks source code from being entered into ChatGPT, for instance. However, lacking a complete understanding of their data, enterprises can find it challenging to create policies that prevent leakage when using these tools.

As a result, we anticipate that enterprises will increasingly leverage AI as a way to gain data visibility and improve their data hygiene. Using ML, for instance, it is now possible to discover and classify sensitive data automatically, such as financial and legal documents, PII and medical data, and much more. From there, enterprises will take the next step and use these ML-driven data categories as the basis of DLP policy — thus preventing data loss when using tools like ChatGPT.

AI will transform how enterprises understand risk and security from the top down

We’ve talked about how enterprises are adopting generative AI tools to transform business. Broadening out, it’s also possible to anticipate the ways AI will become a core business function, specifically from the perspective of risk and security. While enterprises currently leverage AI to unleash new potential and insights across IT, technology, marketing, customer experience, and more, they will increasingly look to AI and ML to transform how they view risk. Here are three key roles that AI will increasingly play for security:

  1. Provide a comprehensive view of risk. In conversations with customers, we hear that enterprises commonly have limitedvisibility and fragmented or delayed data around enterprise risk.In much the same way that AI can help discover and classify data, we predict enterprises will use AI to visualize and quantify risk across their entire footprint. This includes gaining comprehensive insights and risk scoring across their attack surface and across their business entities —including their workforce, applications, assets, and third parties.
  1. Deliver top-down visualization and reporting. Similarly, enterprises will leverage AI to gain top-down and board-level visualizations of their risk — a critical but rarely-achieved goal. Enterprises will use these insights to uncover and drill down into their top contributing factors to risk, including the ability to quantify the financial impact of exposures.
  2. Drive prioritized remediation. Finally, enterprises will seek AI tools that allow them to automatically gain prioritized security actions and policy recommendations, which are tied to their key risk drivers and which quantifiably improve the security of their organization.

Want to learn more about how enterprises can better embrace AI and solve its risks? Tune in to our webinar, AI vs. AI: Harnessing AI Defenses Against AI-Powered Risks.

Artificial Intelligence, Machine Learning
Read More from This Article: Generative AI: 5 enterprise predictions for AI and security — for 2023, 2024, and beyond
Source: News

Category: NewsOctober 25, 2023
Tags: art

Post navigation

PreviousPrevious post:What you need to know about Okta’s security breachNextNext post:Part 2: Guarding against sophisticated threats: Strategies for your best defense

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.