Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Do Your Chatbots and Voice Assistants Have the Testing Support They Need to Succeed?

It’s hard to imagine where today’s businesses would be without conversational AI. This technology, which powers both chatbots and conversational IVR systems, proved essential for navigating a changing service economy through a global pandemic.

Even before COVID-19, Gartner predicted that 70% of white-collar workers would interact with conversational AI platforms every day by 2022. The market for this technology is now expected to grow at a compound annual growth rate (CAGR) of 21.8%, reaching $18.4 billion by 2026.

This is thanks, in no small part, to how much this technology has improved in recent years. Chatbots, in particular, can now support the customer experience in many ways, enabling more customer self-service and reducing the demand on human agents.

Nonetheless, success is not a given when contact centers deploy chatbots and other conversational AI solutions. A chatbot comes with powerful AI capabilities, but it still hasn’t been tailored to fit your needs or tested in your business. Before contact centers take the plunge, they must consider what it really takes to ensure their conversational AI solutions will support and enhance the customer experience.

The growing demand for chatbots in the contact center

In large part, contact center executives don’t need to be convinced that they should adopt conversational AI in the form of either chatbots or intelligent voice assistants. Most are overly eager to bring these solutions into the mix. According to Canam Research, 78% of contact centers planned to deploy AI by 2023, with the largest portion (55%) pointing to chatbots as their primary AI solution. The CAGR for chatbots is expected to grow even faster than conversational AI in general, at 30.29% from 2022–2027.

There are good reasons for this, too. Across the board, contact center executives see the fruits of deploying chatbot solutions. A recent survey of Fast Company Executive Board members noted that adding a chatbot solution to their website enhanced customer engagement, accelerated service, enhanced personalized support, and increased customer satisfaction — just to name a few outcomes.

These positive results are encouraging, but that doesn’t mean chatbots and other conversational AI technologies are now flawless. They still fall short in many ways, from misinterpreted customer intents to delayed handoffs and security failures. And the resulting poor customer experiences can lead to customer churn and other negative impacts on a brand. These possibilities should make any contact center executive pause before jumping on the chatbot bandwagon unprepared.

The chatbot testing conundrum

That’s not to say contact center leaders shouldn’t embrace this technology — only that they should do it in the right way. As responsive and smart as AI is, it’s still limited by its programming. Ultimately, chatbot misfires still occur because bots can’t possibly account for all potential human interactions. The nuances and quirks of human communication are so vast and varied that there’s no way to prepare a chatbot for all possibilities out of the box.

Consider, for instance, how many possible ways someone could ask a chatbot to order a vegetarian pizza.  They may ask for a “veggie pizza,” a “pizza with no meat,” a “meatless pizza,” or use one of any number of other phrases. On top of that, any given person might bring their own quirks, like spelling errors, colloquial ways of saying something, limited tech capabilities — you name it. How do you know if your bot is capable of handling all these variations and nuances? You need to test it.

But truly testing for all these and the many other options for how someone could order pizza is an extensive job. Doing it manually would require many hours, or possibly even days, first to come up with the types of tests to run and then to run them. To do it efficiently, you need a solution that can accomplish all the necessary steps for you — a testing platform that allows you to quickly and efficiently expose these limitations so you can send the bot back to development and teach it new skills.

AI testing AI: the true path to flawless CX

Fundamentally, this kind of testing must cover the entire process so your testers don’t have to test your chatbots manually or spend hours developing test cases.

It means testing from end to end with automated natural language processing (NLP) score testing, conversational flow testing, security testing, performance testing, and chatbot monitoring. Ideally, the testing process should be simple and intuitive, with no coding, scripting, or programming involved.

Let’s return to the veggie pizza example. It would take a person (or a team of people) an incredibly long time to come up with all the ways someone could order their veggie pizza; and even then, they’d probably miss some. The only way to effectively come up with all possibilities would be to leverage AI to generate the test data. AI could select a question, such as “Can I have a vegetarian pizza,” and then automatically generate a list of ways to say the same thing. It could then automatically test the chatbot with those variations to see how it responds.

Going a step further, how many different ways could a person actually say each of those variations? AI can be used to further drill into the unique human quirks that different customers might bring to an interaction. For instance, AI could add layers to testing for customers who type sloppily, type in all caps, misuse homophones, add extra spaces or emojis, and more. “Pizza with no meat” could then become “pizza with no meet,” “PIZZA NO MEAT,” and any number of other possibilities.

These are just examples, but what’s important is that your testers don’t have to come up with all these options or run the tests themselves. You need a testing solution that will do it for them, with minimal manual effort. What you want is, effectively, AI testing AI so you can run these kinds of comprehensive, detailed tests much more quickly and frequently. This allows your testers to expose more chatbot weaknesses so your developers can teach and improve your bots more often and with greater precision, ultimately providing a better-quality experience for your chatbot using customers.

Contact center executives’ instincts are right: Investing in chatbots is a smart move. But doing so without adequate testing support could lead to more harm than good. Cyara Botium does exactly what we have described here and can provide the testing support your contact center’s chatbot technology needs. Learn more and try a demo to see for yourself.

Artificial Intelligence, Machine Learning


Read More from This Article:
Do Your Chatbots and Voice Assistants Have the Testing Support They Need to Succeed?
Source: News

Category: NewsNovember 22, 2022
Tags: art

Post navigation

PreviousPrevious post:Building Services Versus Buying Them: It’s Not a Zero-Sum GameNextNext post:CIO Leadership Live with Glen McLatchie, Chief Information Officer of SkyCity Entertainment Group

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.