Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Databricks’ new data lakehouse aims at media, entertainment sector

After launching industry-specific data lakehouses for the retail, financial services and healthcare sectors over the past three months, Databricks is releasing a solution targeting the media and the entertainment (M&E) sector.

Now generally available, the M&E data lakehouse comes with industry use-case specific features that the company calls accelerators, including real-time personalization, said Steve Sobel, the company’s global head of communications, in a blog post.

“The idea of these so-called accelerators is to provide pre-built analyses and use-case functionality to ultimately speed deployment and time to value for customers,”  said Doug Henschen, principal analyst at Constellation Research.

“You can think that the general-purpose version of the Databricks Lakehouse as giving the organization 80% of what it needs to get to the  productive use of its data to drive business insights and data science specific to the business. The idea of the industry-specific version of the Lakehouse is to get customers in specific industries, say, 90% of the way toward productive use of their data,” Henschen said.

The other 10% represents the effort of initial deployment, data-loading, configuration and the setup of administrative tasks and analysis that is specific to the customer, the Henschen said.

The data lakehouse is a relatively new data architecture concept, first championed by Cloudera, which offers both storage and analytics capabilities as part of the same solution, in contrast to the concepts for data lake and data warehouse which, respectively, store data in native format, and structured data, often in SQL format.

Features focus on media and entertainment firms

Some of the focused solutions that form a part of Databricks’ new M&E lakehouse include recommendation engines, a customer lifetime value (CLV) module, a streaming quality of service module, and toxicity detection for gaming.

While recommendation engines help create more personalized experiences for consumers with AI-powered content recommendations that drive engagement and monetization opportunities, the CLV module identifies valuable customers with models that focus on spending patterns in order to help enterprises retain users and make better marketing investments, the company said. Recommendations also include suggestions for product development choices.

“The most effective recommendation engines are very specific to industries and use cases. They require specific data inputs, models, algorithms and they deliver very specific recommendations. To deliver accurate, high-confidence recommendations is no easy task, so accelerators can provide helpful starting points for enterprises,” Henschen said.

The new data lakehouse’s features for streaming quality of service and toxicity detection for gaming are very case-specific services. While the streaming quality of service, as the name suggests, analyzes both streaming and batch data to ensure optimum, tailored content is delivered to users, the gaming-specific service uses natural language processing for real-time detection of toxic language to ensure an optimal gaming experience for users.

Partner solutions to boost functionality, adoption

As with other data lake and data warehouse providers — such as Snowflake, which also has been on an industry-focused solutions release spree — Databricks too wants to offer more functionality to its customers by partnering with other firms, which in turn is expected to boost adoption of its new lakehouse solution.

“Partnerships can be time-saving for customers as long as they introduce time-saving, pre-built integrations between the partner platforms and solutions. It’s typical for such partnerships to start with the most popular solutions in a given industry or with deepening integrations with partners already established within a given industry. The more the number of partnerships, the better it is for the solution provider,” Henschen said.
 Some of the partnerships under the M&E lakehouse solution include the company’s strategic ties with AWS, Cognizant, Lovelytics, Labelbox and Fivetran.

While the partnership with AWS is focused on providing more data and analytics capabilities for the M&E sector, the Cognizant partnership is aimed at maintaining video quality for customers.

Cognizant’s solution pairs telemetry data with artificial intelligence and machine learning to quickly identify and remedy video quality issues in real-time to solve issues such as  playback failure, delayed time-to-first-frame, or a rebuffing issue, the company said.

The company’s collaboration with Lovelytics is focused on baseball. As part of the solution, baseball team managers can optimize strategy for a game by using predictive analysis via artificial intelligence to forecast performance.

The solution also leverages bio-mechanic indicators to signal and prevent potential player injuries, the company said.

The joint solution with Labelbox is targeted toward media companies and is expected to help firms derive more value out of unstructured data.

Databricks has partnered with Fivtran to offer a data integration service which it claims can ingest data from over 180 sources including operational, ad and marketing technology solutions.


Read More from This Article: Databricks’ new data lakehouse aims at media, entertainment sector
Source: News

Category: NewsApril 25, 2022
Tags: art

Post navigation

PreviousPrevious post:Harvesting the Benefits of Cloud-Native HyperconvergenceNextNext post:Build a Collaborative Network to Mitigate Supply Chain Risks

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.