Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Data-Driven Decision Making

Data-driven decision making (DDDM) is just what it sounds like. DDDM uses facts, metrics, and data to guide strategic business decisions that align with goals, objectives, and priorities. If organizations can realize the full value of their data, everyone is empowered to make better decisions.

When you look at why IT analytics and DDDM exist, it’s because executives often make decisions based on a hunch. Sometimes, maybe often depending on the executive and the context, their hunches are correct.

For example, Fred Smith has an insight into the transport business and, despite widespread skepticism, creates Federal Express. Michael Eisner hears a pitch for an offbeat game show and, based on his gut, commits millions to developing Who Wants to Be a Millionaire?

But gut instinct is not how we want to consistently operate an enterprise. We don’t want to make decisions that way. Data is a much more reliable foundation for decision making.

Accurate data is fresh, timely data.

In IT, if data is even a week, let alone three months old, you’d be better off licking your finger and holding it up in the wind rather than deciding based on data that old. Ninety days ago doesn’t tell you where your applications are, where your workloads are, or where your customers are. And it tells you nothing about potential risks from cyberattacks.

An awful lot of IT analytics is garbage in, garbage out because old data, by the time it’s used, has become false data. So, you perform intelligent analytics on it to achieve a conclusion that’s no better than the false data you started with.

For example, imagine a hospital that hadn’t updated its configuration management database (CMDB) in 90 days. That’s like flying an airplane on 90-day-old instrument data. And that really understates the problem.

Pilots don’t have to worry about a new mountain or a new skyscraper popping up every couple of weeks. But in IT, the equivalent of a new mountain can emerge in hours or days.

What types of decisions are informed by accurate endpoint data?

There’s a hierarchy of data-driven decisions in operations, security, and compliance, but let’s start with one that’s operational. In most organizations, IT refreshes software based on an alert from the vendor or the help desk receiving a high number of complaints.

The vendor usually alerts its customers when it’s time to update because of a recently discovered vulnerability. It’s often a “panic” alert. But it’s the rare IT team that has enough personnel to update every piece of software that needs it. And it wouldn’t be a good way to go. There would likely be downstream instability from any change you made. So, the decision to update or not becomes subjective, not data-driven.

But with the right tool, you can know, second by second, every application crash that happens across all your enterprise applications. Having that data in real time means IT can say, “The vulnerability hasn’t made the top ten of complaints this week, but we know this application is crashing and we’ll fix it centrally.” Knowing second by second what’s crashing, what’s degrading CPU performance, and/or what’s blue-screening, lets IT make a decision that’s also a business decision.

In some situations, seconds-old data matters, especially with a distributed workforce. You want to be able to see instantly the vulnerabilities of every endpoint. There may be too many to fix, but when you know where they are and how critical, you can make informed decisions about which ones to address. For example, there may be corporate network mitigations in place, but users at home are in the “Wild West,” potentially exposed to every attack.

Just what is “fresh data” from an IT perspective?

The importance of data freshness is not uniform across IT operations. For example, if hardware is on a low refresh cycle, such as two or three years, it’s not significant if CPU or hard drive model data is a month old. But if you’re making decisions about retiring servers or migrating workloads from a physical to a virtual environment, data that is days old will very likely cause problems. You could be retiring a server a business unit depends on or moving workloads that support a critical service.

With up-to-the-second — or at least up-to-the-hour — data, you’re in a much better position to act.

IT analytics and digital transformation.

Digital transformation is like Zero Trust. It means different things to different people. Ask 10 engineers, and you’ll get 12 different answers. One aspect of digital transformation is the mobility and centralization of data. It allows organizations to switch application and service providers because the data and the service have been decoupled.

But if you look at where digital transformation efforts have “gone south,” it’s often in the realm of process and not knowing what servers and endpoints are communicating with to enable a business service. And this is where the timeliness of data and digital transformation intersect.

For example, if you have the ability to crawl through every .txt file, PDF, Word doc, and Excel spreadsheet on a laptop to find something that shouldn’t be there but should be stored centrally, it’s much easier to switch your central storage provider.

Accurate data removes the risk from that decision. That’s how fresh data increases agility. If it takes months of effort to move from on-premises to a hosted system, or from one host to another, the friction and cost of transfer are so high you won’t do it. With more agility and less friction, digital transformation efforts become a buyer’s market.

Learn how to make better business decisions with accurate, complete and up-to-date data about all endpoints — wherever they are.


Read More from This Article: Data-Driven Decision Making
Source: News

Category: NewsDecember 23, 2021
Tags: art

Post navigation

PreviousPrevious post:How to do security like GoogleNextNext post:6 Ways Data Protection as a Service Meets Your Data Challenges

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.