Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Cracking the code: solving for 3 key challenges in generative AI

By Chet Kapoor, Chairman and CEO, DataStax

Generative AI is on everyone’s mind. It will revolutionize how we work, share knowledge, and function as a society. Simply put, it will be the biggest innovation we will see in our lifetime.

One of the biggest areas of opportunity is productivity. Think about where we’re at right now – we’re facing workforce shortages, debt, inflation, and more. If we don’t improve the productivity of society, there will continue to be economic implications.

With AI, we will see the compounding effects of productivity throughout society. In fact, McKinsey has referred to generative AI as the next productivity frontier. But while technology is definitely a catalyst for productivity, it doesn’t drive transformation on its own. This starts with us – leaders and enterprises. When we bring AI to the enterprise, companies deploy AI to increase productivity around the world, which in turn drives society forward.

Like with any powerful new technology (think: the internet, the printing press, nuclear power), there are great risks to consider. Many leaders have expressed a need for caution, and some have even called for a pause in AI development.

Below, I’ll share a few key AI challenges, how leaders are thinking about them, and what we can do to address them.

Overcoming bias

AI systems draw data from limited sources. The vast majority of data these systems rely on is produced by a section of the population in North America and Europe, so AI systems (including GPT) reflect that worldview. But there are 3 billion people who still do not have regular access to the internet and have not created any data themselves. Bias doesn’t just come from data; it comes from the humans working on these technologies.

Implementing AI will bring these biases to the forefront and make them transparent. The question is: how can we address, manage, or mitigate inherent bias as we build and use AI systems? A few things:

  • Tackle bias not just in your data, but also be aware it can result from how the data is interpreted, used, or interacted with by users
  • Lean into open source tools and data science. Open source can ease technical barriers to fighting AI bias via collaboration, trust, and transparency
  • Most importantly, build diverse AI teams who bring multiple perspectives to detecting and fighting bias. As Reid Hoffman and Maelle Gavet discussed in a recent Masters of Scale Strategy Session, we should “also incorporate a diversity of mindsets towards AI, including skeptics and optimists.”

Policy and regulations

The pace of AI advancement is lightning-fast; new innovations seem to happen every day. With important ethical and societal questions around bias, safety, and privacy, smart policy and regulations around AI development are crucial.

Policy makers need to figure out a way to have a more agile learning process for understanding the nuances in AI. I have always said that over time markets are more mature than the single mind. The same can be said about policy, except given the rate of change in the AI world, we will have to shrink time. There needs to be a public-private partnership, and private institutions will play a strong role.

Cisco’s EVP and GM of Security and Collaboration, Jeetu Patel, shared his perspective in our recent discussion:

“We have to make sure that there’s policy, regulation, government- and private-sector assistance in ensuring that that displacement does not create human suffering beyond a certain point so that there’s not a concentration of wealth that gets even more exacerbated as a result of this.”

‘Machines taking over’

People are really afraid of machines replacing humans. And their concerns are valid, considering the human-like nature of AI tools and systems like GPT. But machines aren’t going to replace humans. Humans with machines will replace humans without machines. Think of AI as a co-pilot. It’s the user’s responsibility to keep the co-pilot in check and know its powers and limitations.

Shankar Arumugavelu, SVP and Global CIO at Verizon, says we should start by educating our teams. He calls it an AI literacy campaign.

“We’ve been spending time internally within the company on raising the awareness of what generative AI is, and also drawing a distinction between traditional ML and generative AI. There is a risk if we don’t clarify machine learning, deep learning, and generative AI – plus when you would use one versus the other.”

Then the question is: What more can you do if something previously took you two weeks and now it takes you two hours? Some leaders will get super efficient and talk about reducing headcount and the like. Others will think, I’ve got all these people, what can I do with them? The smart thing to do is figure out how we channel the benefits of AI into more knowledge, innovation, and productivity.

As Goldman Sachs CIO Marco Argenti said, the interaction between humans and AI will completely redefine how we learn, co-create, and spread knowledge.

“AI has the ability to explain itself based on the reader. In fact, with the prompt, the reader almost becomes the writer. The reader and the writer are, for the very first time, on equal footing. Now we can extract relevant information from a corpus of knowledge in a way that actually follows your understanding.”

Working together

We’ve seen leaders calling for a pause on the development of AI, and their concerns are well-founded. It would be negligent and harmful not to consider the risks and limitations around the technology, and we need to take governance very seriously.

However, I don’t believe the answer is to stop innovating. If we can get the brilliant people working on these technologies to come together, and partner with government institutions, we’ll be able to balance the risks and opportunities to drive more value than we ever thought possible.

The outcome? A world where productivity is abundant, knowledge is accessible to everyone, and innovation is used for good.

Learn about vector search and how DataStax leverages it to unlock AI capabilities and apps for enterprises.

About Chet Kapoor:

Chet is Chairman and CEO of DataStax. He is a proven leader and innovator in the tech industry with more than 20 years in leadership at innovative software and cloud companies, including Google, IBM, BEA Systems, WebMethods, and NeXT. As Chairman and CEO of Apigee, he led company-wide initiatives to build Apigee into a leading technology provider for digital business. Google (Apigee) is the cross-cloud API management platform that operates in a multi- and hybrid-cloud world. Chet successfully took Apigee public before the company was acquired by Google in 2016. Chet earned his B.S. in engineering from Arizona State University.

Artificial Intelligence, Machine Learning
Read More from This Article: Cracking the code: solving for 3 key challenges in generative AI
Source: News

Category: NewsJuly 20, 2023
Tags: art

Post navigation

PreviousPrevious post:How real-time operational insights drive superior tech platform developmentNextNext post:4 CIOs on marketing IT’s value to the business

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.