Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Computer Vision Is Transforming the Transportation Industry, Making It Safer, More Efficient and Improving the Bottom Line

Computer vision is helping to reshape the transportation industry at every level from streamlining the passenger experience to preemptive fleet maintenance to fuel optimization. As the transportation industry continues to evolve, converging technologies such as 5G and powerful edge compute will enable the next generation of prescriptive and adaptive data-driven outcomes benefiting passengers, the industry and sustainability.

Whether moving people or goods, transportation environments are in constant motion. Railways, airports, cargo ships, and public and private transportation are complex use cases for computer vision. They require real-time situational awareness, based on the analysis of many different data points, which taxes compute and storage resources at the edge—defined as where the physical world meets the data world. 

The challenge is being met using a real-time federated approach with scalable, high-performance hyperconverged infrastructures (HCI), allowing organizations to capture and process large amounts of data at the edge, and provide real-time insights. The results, not the actual data, are then sent back to a centralized location for re-training of the analytics model which then is pushed back out to all edge locations, thus delivering better quality insights in near real-time.

Although computer vision has not yet been widely adopted industry wide, transportation organizations that have invested are realizing gains in terms of safety, customer experience, operational efficiency, sustainability and revenue generation, and are looking to take advantage of further advances in technology in the future. Automation and touchless processes integrated with computer vision greatly enhance transportation services as well.

Collectively, this has a big impact on adopters, especially when organizations are hard-pressed to maximize profits amidst rising costs and reduced resources.

What transportation industry challenges are addressed or resolved with computer vision?

All facets of the transportation industry have seen tremendous loss in revenue and resources over the last few years. As the economy began to turn around, public and private transportation organizations were under pressure to rebound with lower budgets and labor shortages, spurring efforts to find ways to be more efficient.

In addition, safety is a key requirement across rail, water, air, and roadways, often requiring split-second decisions that can often be enhanced by machine learning. And predictive maintenance, where parts are replaced before equipment and vehicles break down, is extremely valuable to operations but often difficult to do well due to the number of variables involved.

In any of these situations, different data points can be ingested once, and analyzed for multiple uses. A security infrastructure can provide a foundation which captures audio and video data, and data from IoT devices, which the computer vision system then combines and analyzes, producing insights that can be used to positively impact safety, the customer experience, operational efficiencies, sustainability and revenue generation.

How can computer vision improve passenger, personnel and facility safety?

A significant part of passenger and personnel safety is to ensure that the facility and equipment itself is physically secure. Through the use of cameras and sensors, computer vision enables more precise inspection of passenger baggage and cargo.

Certain types of behaviors or objects can also be monitored. Electronic devices, such as smartphones and laptops, each have a unique MAC address. Airports today can capture device MAC addresses to track devices throughout a facility. When combined with data from sensors, those devices can be automatically tracked and decisions made in real time. If an unauthorized person enters a secure area, security personnel are alerted to take immediate action. Computer vision systems can also determine how many people are in a location, for example if an evacuation is necessary.

What are examples of how computer vision affects the customer experience and operational efficiencies today, and what’s coming tomorrow?

An important focus of airports is to get people through the facility as quickly as possible. Part customer experience and part operational efficiency, computer vision with artificial intelligence can improve queue management by proactively determining when to add customer service personnel to an airport check-in counter or open another security line. 

The touchless passenger experience is also gaining traction, which aims to minimize time from curb to gate while enhancing the passenger experience throughout the journey (Figure 1). For example, passengers could be automatically checked in upon arrival, prechecked to walk through security, be alerted to gate changes, order a coffee that’s waiting at the shop closest to the gate and use frictionless boarding. This scenario is possible through the correlation of data, with the computer vision system making the decision that you are the correct passenger.

graphic transportation

Dell

Figure 1. Use of computer vision to streamline the passenger experience 

We briefly mentioned the value of predictive maintenance to organizations; it also has a considerable impact on fuel consumption and costs, and can reduce an organization’s carbon footprint. Cameras and thermal vision technology are used to visually inspect vehicles for wear and tear, and when integrated with IoT sensors, can more accurately identify parts that should be replaced.

Airports can use computer vision to greatly increase the efficiency of ramp operations and plane turnaround. The system monitors the location of planes that just landed and whether the luggage offboarding equipment is in place. It also automatically notifies the catering truck, fuel truck, and ramp personnel.

Public transportation also benefits from the efficiencies brought on by computer vision. As municipal transit agencies look to increase ridership and fuel efficiency, some communities are experimenting with dynamic routing of buses to reduce instances of empty buses on routes. For passenger vehicles, some cities charge a fee when your vehicle enters the city center. Pollution sensors detect elevations in airborne chemicals, such as carbon monoxide, triggering an alert that results in varying fees paid by those vehicle owners.

Railways equip trains with cameras and install them in stations to inspect and monitor parts as the train rolls down the track, increasing safety, efficiency and revenues. For a detailed look at how computer technology is used to inspect railcars, browse this Duos Technology Group case study. 

Does computer vision affect sustainability in transportation?

In the context of transportation, sustainability focuses mainly on the consumption and proper management of power and fuel. Airports, for example, deal with large amounts of fuel and are concerned about the release of potentially dangerous amounts of vapors and chemicals that could increase air pollution or contaminate groundwater. Deicing planes also requires the use of chemicals, so cameras and sensors can assist in deicing a plane just enough to make it safe without an excess of chemicals flowing from the tarmac or runway into the ground. Airports and railways deal with vegetation control as a means of fire suppression. Computer vision technology monitors fuel usage, air and ground contamination, and even the height of vegetation around landing strips and railyards. 

Similar to smart cities, airports, train stations and cruise ships can use computer vision to control power consumption, water usage, air conditioning and heating. Based on where people are and their usage patterns, smart lighting can be automatically controlled to turn off or use downlighting during the brightest part of the day and light other areas 24/7 for safety purposes.

How exactly can computer vision generate revenue for transportation companies and the public sector?

This gets back to doing more with fewer resources as well as enhancing current revenue streams. For an airport, that means steering passengers toward retail within the facility to maximize their spend and turning aircraft around quickly, to allow more flights per day. A single flight can generate tens of thousands of dollars in fees, so getting one more flight through a gate per hour has a significant impact on revenue. 

Depending on how crowded an airport is, dynamic pricing could be implemented automatically to adjust parking pricing. States and local municipalities also benefit from dynamic pricing. Drivers typically need a tag or pass for high-occupancy lanes on freeways. Computer vision technology can increase the fee for high-occupancy lane usage based on the current amount of traffic.

How do mobile edge computing and 5G affect computer vision in transportation?

Real-time actionable insights and learning is critical to situational awareness in the field, and technologies like 5G and mobile edge computing enable faster response times.

Consider rolling stock, like a public bus. The driver needs to focus on the road and passengers. A bus equipped with cameras and a compact hyperconverged infrastructure can use computer vision to create real-time situational awareness for the driver as well as for transit hub staff. As the vehicle approaches a bus stop, the system captures the number of waiting passengers, or passengers with special needs. The increased bandwidth of 5G enables fast transfers of the insights back to a central location for analysis, with the results of the analysis streamed back to the bus in near real time.

Computer vision is truly transforming the transportation industry, aided by automation, touchless technologies and 5G. Edge computing and machine learning capabilities make faster and better-quality decision making and situational awareness in the field possible, which in turn increases efficiencies, makes environments safer, lowers carbon emissions, raises customer satisfaction and helps organizations be more profitable. 

For an overview of computer vision and its impact on industries, see The Future Is Computer Vision – Real-Time Situational Awareness, Better Quality and Faster Insights. For more, see:

  • Enabling intelligent workflows across all modes of transportation
  • Dell Technologies Validated Designs for Computer Vision | Smart Airports
  • Building the Next Generation of Smarter and Safer Airports

***

Intel® Technologies Move Analytics Forward

Data analytics is the key to unlocking the most value you can extract from data across your organization. To create a productive, cost-effective analytics strategy that gets results, you need high performance hardware that’s optimized to work with the software you use.

Modern data analytics spans a range of technologies, from dedicated analytics platforms and databases to deep learning and artificial intelligence (AI). Just starting out with analytics? Ready to evolve your analytics strategy or improve your data quality? There’s always room to grow, and Intel is ready to help. With a deep ecosystem of analytics technologies and partners, Intel accelerates the efforts of data scientists, analysts, and developers in every industry. Find out more about Intel advanced analytics.


Read More from This Article: Computer Vision Is Transforming the Transportation Industry, Making It Safer, More Efficient and Improving the Bottom Line
Source: News

Category: NewsApril 12, 2022
Tags: art

Post navigation

PreviousPrevious post:Fight Cloud Jacking by Slashing ComplexityNextNext post:Here’s Why Tech Companies Should Continue to Invest in Office Space

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.