Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Building a Beautiful Data Lakehouse

Applying artificial intelligence (AI) to data analytics for deeper, better insights and automation is a growing enterprise IT priority. But the data repository options that have been around for a while tend to fall short in their ability to serve as the foundation for big data analytics powered by AI.

Traditional data warehouses, for example, support datasets from multiple sources but require a consistent data structure. They’re comparatively expensive and can’t handle big data analytics. However, they do contain effective data management, organization, and integrity capabilities. As a result, users can easily find what they need, and organizations avoid the operational and cost burdens of storing unneeded or duplicate data copies.

Newer data lakes are highly scalable and can ingest structured and semi-structured data along with unstructured data like text, images, video, and audio. They conveniently store data in a flat architecture that can be queried in aggregate and offer the speed and lower cost required for big data analytics. On the other hand, they don’t support transactions or enforce data quality. If those in charge of managing the data lake don’t create precise processes and metadata for organizing data, the lake can quickly devolve into what’s come to be known as a “data swamp”—a data lake that makes it hard for users to locate data. 

If only there were a best-of-both-worlds compromise. 

Warehouse, data lake convergence

Meet the data lakehouse. It’s a modern repository that stores all structured, semi-structured, and unstructured data as a data lake does. However, it also supports the quality, performance, security, and governance strengths of a data warehouse. As such, the lakehouse is emerging as the only data architecture that supports business intelligence (BI), SQL analytics, real-time data applications, data science, AI, and machine learning (ML) all in a single converged platform.

The open lakehouse architecture implements data structures and management features similar to those in a warehouse directly on top of low-cost cloud storage in open formats, providing:

  • Support for diverse data types, ranging from unstructured to structured data, big data workloads, analytics, and AI
  • Consistency as multiple parties concurrently read or write data
  • BI support directly on source data, reducing staleness, latency, and the operational cost of having two copies of data in both a data lake and a warehouse
  • Open storage formats with API to a variety of tools and engines, including ML and Python/R libraries, which can access data directly
  • End-to-end streaming to enable real-time reporting and eliminate the need for separate systems dedicated to serving real-time data applications
  • Schema enforcement and evolution
  • Robust governance and auditing mechanisms
  • Decoupled storage and compute resources to enable asynchronous scaling.

Challenges of supporting multiple repository types

It’s common to compensate for the respective shortcomings of existing repositories by running multiple systems, for example, a data lake, several data warehouses, and other purpose-built systems. However, this process frequently creates a few headaches. Most notably, data stored in one repository type is often excluded from analytics run on another, which is suboptimal in terms of the results. 

In addition, having multiple systems requires the creation of expensive and operationally burdensome processes to move data from lake to warehouse if required. To overcome the data lake’s quality issues, for example, many often use extract/transform/load (ETL) processes to copy a small subset of data from lake to warehouse for important decision support and BI applications. This dual-system architecture requires continuous engineering to ETL data between the two platforms. Each ETL step risks introducing failures or bugs that reduce data quality. 

Second, leading ML systems, such as TensorFlow, PyTorch, and XGBoost, don’t work well on data warehouses. Data stored in warehouses, then, can’t be part of the multistructured, aggregate dataset, which yields the most comprehensive results. Many of the recent advances in AI/ML have been in improving models for processing unstructured data, which warehouses can’t run. Unlike BI, which extracts a small amount of data and for which warehouses are optimized, ML systems process huge datasets using complex, non-SQL code.

On the data lake side, lack of data consistency makes it almost impossible to mix appends and reads, and batch and streaming jobs. As a result, much of the hoped-for data lake business outcomes haven’t materialized.

Pulling it all together

Data lakehouses are enabled by a new, open system design with data structures and data management features of a warehouse but implemented directly on the modern, low-cost storage platforms used for data lakes. Merging them into a single system means that data teams can move faster, as they can get to data without accessing multiple systems. Data lakehouses also ensure that teams have the most complete and up-to-date data available for data science, AI/ML, and business analytics projects.

Learn more at https://delltechnologies.com/analytics. 

Intel® Technologies Move Analytics Forward

Data analytics is the key to unlocking the most value you can extract from data across your organization. To create a productive, cost-effective analytics strategy that gets results, you need high performance hardware that’s optimized to work with the software you use.

Modern data analytics spans a range of technologies, from dedicated analytics platforms and databases to deep learning and artificial intelligence (AI). Just starting out with analytics? Ready to evolve your analytics strategy or improve your data quality? There’s always room to grow, and Intel is ready to help. With a deep ecosystem of analytics technologies and partners, Intel accelerates the efforts of data scientists, analysts, and developers in every industry. Find out more about Intel advanced analytics.


Read More from This Article: Building a Beautiful Data Lakehouse
Source: News

Category: NewsMarch 7, 2022
Tags: art

Post navigation

PreviousPrevious post:How Cloud Is Turning Everything-As-A-Service Into RealityNextNext post:CIO Leadership Live with Matt Mehlbrech, Vice President of Information

Related posts

SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Consejos para abordar la deuda técnica
May 8, 2025
Training data: The key to successful AI models
May 8, 2025
Bankinter acelera la integración de la IA en sus operaciones
May 8, 2025
The gen AI at Siemens Mobility making IT more accessible
May 8, 2025
Recent Posts
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
  • IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
  • Consejos para abordar la deuda técnica
  • Training data: The key to successful AI models
  • Bankinter acelera la integración de la IA en sus operaciones
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.