Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Bringing AI to your organization? Better bring the right database

By Patrick McFadin, DataStax developer relations and contributor to the Apache Cassandra project.

Netflix tracks every user’s actions to instantly refine its recommendation engine, then uses this data to propose the content users will love. Uber gathers driver, rider, and partner data in the moment and then updates a prediction engine that informs customers about wait times or suggests routes to drivers in real time. FedEx aggregates billions of package events to optimize operations and instantly share visibility with its customers on delivery status.

These leaders succeed with these real-time AI capabilities in large part because of their ability to aggregate massive amounts of real-time data from customers, devices, sensors, or partners as it moves through applications. This data in turn is used to train and serve machine learning models. These companies act on this data in the moment, serving millions of customers in real time. And they all rely on the open-source NoSQL database Apache Cassandra®.

Let’s take a look at why Cassandra is the database of choice for organizations building enterprise-scale, real-time AI applications.

The challenges posed by real-time AI

Only 12% of AI initiatives succeed in achieving superior growth and business transformation, according to Accenture. Why? In a nutshell, data scientists and developers have been trying to build the most powerful, sophisticated applications for the next generation of business on complex infrastructure built for the demands of yesterday.

Many traditional AI/ML systems, and the outcomes they produce, rely on data warehouses and batch processing. The result: A complex array of technologies, data movements, and transformations are required to “bring” this historical data to ML systems. This alters and slows the flow of data from input to decision to output, resulting in missed opportunities that can open the door for customers to churn or allow recognized cyber security threat patterns to go undetected and unmitigated.

The velocity, type, and volume of data drive the quality of predictions and the impact of the outcomes. Real-time AI demands large amounts of data to train ML models and make accurate predictions or generate new content very quickly. This requires a high-performance database that can bring ML to the data. You’ve created the right architecture to collect and store your data and the best way to keep costs low is to leverage what you have. The solution to a storage cost problem is not adding more storage; it’s finding ways to process your data in place.

Enter Cassandra

There are various databases that can be used to develop a real-time AI application. Relational databases such as MySQL or PostgreSQL may be user-friendly, but they are not capable of managing the vast amounts of data required for web-scale AI applications. Although open-source data stores like Redis are available, they lack the durability necessary to support AI applications that are intended to form the foundation of a business.

For real-time AI to live to its full potential, the database that serves as its foundation must be:

  • highly scalable to manage massive amounts of data
  • reliable for continuous data access
  • fast enough to easily capture big data flows
  • flexible enough to deal with various data types.

Cassandra is an open-source NoSQL database that scales with performance and reliability better than any other. Many companies, like those mentioned above, have transformed their businesses and led their industries thanks to real-time AI built on Cassandra. Why?

Horizontal scalability: As AI applications become more sophisticated, they require the ability to handle ever-increasing volumes of data. Cassandra’s distributed architecture is based on consistent hashing, which enables seamless horizontal scaling by evenly distributing data across nodes in the cluster (a collection of nodes). This ensures that your AI applications can handle substantial data growth without compromising performance, a crucial factor from a statistical perspective.

High availability: The decentralized architecture of Cassandra provides high availability and fault tolerance, which ensures that your AI applications remain operational and responsive even during hardware failures or network outages. This feature is especially important for real-time AI applications, as their accuracy and efficiency often rely on continuous access to data for mathematical modeling and analysis.

Low latency: With real-time AI, signals generated by user activities must be captured at a very high rate; the ability to write this data to a database fast is critical. Cassandra’s peer-to-peer architecture and tunable consistency model enable rapid read and write operations, delivering low-latency performance essential for real-time AI applications.

Unlike many other data stores, Cassandra is designed in a way that doesn’t require disk reads or seeks during the write process, so writing data to Cassandra is extremely fast and provides the freedom to capture incoming signals with ease—no matter how fast they arrive.

It ensures that AI algorithms receive the latest data as quickly as possible, allowing for more accurate and timely mathematical computations and decision-making.

Flexible data modeling: Cassandra’s NoSQL data model is schema-free, which means that the methodology for storing data is far more flexible than alternative databases, making it possible to store and query complex and diverse data types common in ML and AI applications. This flexibility enables data scientists to adapt their data models as requirements evolve without having to deal with the constraints of traditional relational databases.

The Cassandra community

The Cassandra open-source project is built and maintained by a community of very smart engineers at some of the biggest, most-advanced users of AI (Apple, Netflix, and Uber, to name a few) who are constantly modernizing and extending the capabilities of the database. The upcoming Cassandra 5.0 release, for example, will offer vector search, a critical feature that will be a groundbreaking aid to organizations grappling with the massive datasets that accompany AI efforts.

These advantages make Cassandra a reliable foundation for real-time AI applications that need to handle massive volumes of data while ensuring continuous data access, high performance, and adaptability. If your organization aims to leverage AI to its full potential, choosing the right database is a critical step in your journey.

By adopting a scalable and durable solution like Cassandra, you can ensure the successful execution of your AI initiatives, reduce cost, and optimize processing. It’s time to reconsider your data infrastructure and invest in the right technology to fuel your growth. Remember, the success of your AI strategy doesn’t only lie in the complexity of your algorithms but also in the robustness of your data management system.

Join the growing community of businesses pioneering the future of AI with Cassandra. Seize the opportunity today and equip your business to make the most of real-time AI.

Learn how DataStax makes real-time AI possible here.

About Patrick McFadin

DataStax

Patrick McFadin is the co-author of the O’Reilly book “Managing Cloud Native Data on Kubernetes.” He works at DataStax in developer relations and as a contributor to the Apache Cassandra project. Previously he has worked as an engineering and architecture lead for various internet companies.

Artificial Intelligence, Machine Learning
Read More from This Article: Bringing AI to your organization? Better bring the right database
Source: News

Category: NewsJune 7, 2023
Tags: art

Post navigation

PreviousPrevious post:Help wanted: IT tools and talent for building a multicloud estateNextNext post:7 ways to spot hidden IT talent within your ranks

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.