Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Avoid generative AI malaise to innovate and build business value

Despite the promise generative AI holds for boosting corporate productivity, closing the gap between its potential and business value remains one of CIOs’ chief challenges. It isn’t for lack of effort, as recent research suggests.

Sixty-six percent of C-level executives are ambivalent or dissatisfied with the progress of their AI or GenAI efforts, according to Boston Consulting Group1. The research cited a lack of talent and skills to work with the technology (62%), unclear AI and GenAI investment priorities (47%), and the absence of a strategy for responsible AI (41%) as the top three obstacles.

Deloitte2 meanwhile found that 41% of business and technology leaders said a lack of talent, governance, and risks are barriers to broader GenAI adoption.

The GenAI FUD struggle is real

The concern even has some of the vendors behind leading GenAI platforms toning down their rhetoric. They fear that GenAI’s promise has outstripped its current value relative to its high cost, accuracy, and unclear productivity gains, putting them in danger of overpromising and underdelivering—a kiss of death in the tech sector.

Has GenAI finally fallen into Gartner’s dreaded “trough of disillusionment”? Perhaps. However such fear, uncertainty, and doubt (FUD) can make it harder for IT to secure the necessary budget and resources to build services. This could lead to more shadow AI, which could lead to more security threats and a wider attack surface.

As an IT leader, you’re in a unique position to help your organization avoid such malaise. You can innovate and protect your corporate data by running a private GenAI instance that affords you greater control over total cost of ownership, performance, security, and other critical factors.
But how do you get there? This playbook can help.

Reach consensus on strategy. You’ll build a cohesive strategy, centered around business use cases agreed upon by the C-suite, line of business leaders, and other key stakeholders. Include low-hanging fruit to bigger medium and long-term big bets for GenAI adoption. Plan the orchestration of people, processes, and technology within IT and be sure to incorporate governance policies and guardrails. You must also determine how you will educate employees on the dangers of shadow AI, as well as what GenAI services and best practices support safe, responsible use.

Assess your readiness. GenAI use cases require prudent infrastructure planning and deployment. Capturing the “as-is” state of your environment, you’ll develop topology diagrams and document information on your technical systems. Next craft a “to-be” blueprint of what you need to support your strategic vision, including targeted capabilities, future IT architecture, and talent required to facilitate the work.

Cleanse your data. GenAI requires high-quality data. Ensure that data is cleansed, consistent, and centrally stored, ideally in a data lake. Data preparation, including anonymizing, labeling, and normalizing data across sources, is key. You’ll also institute guardrails for data governance, data quality, data integrity, and data security. This will help you curb risks as well as reduce the likelihood of wasted efforts that can accompany dirty data.

Right-size your model(s). Creating private instances of pre-trained LLMs, such as Llama 2, can help you get up and running quickly while saving costs on inferencing. You may also choose to leverage retrieval augmented generation (RAG) to augment your model with domain-specific information, which may also reduce hallucinations. Low-cost proof-of-concepts can help you reduce the risk of overprovisioning. Ultimately, how you decide to right-size your models will depend on your use cases and the business outcomes you wish to derive from them.

Choose a workload location. Choose the operating environment that makes the most sense based on your business requirements. On-premises will allow you to customize your model and support it with hardware optimized to handle heavy compute and storage loads. Maintaining complete control over your own infrastructure and data will afford you more peace of mind as you embark on this transformational journey.

Pick the right partners. As you begin building, remember to start with the low-hanging fruit—something core to your business—that will help you gain maturity. High-risk (even if high-reward) use cases can hinder—or worse—your GenAI plans. And always, always keep a human in the loop to maintain organizational guardrails.

Remember: GenAI is nascent enough that there is no singular formula for success. And your IT organization may lack some of the resources, such as talent and tools, to facilitate your vision.

That’s where partners can help you choose your own adventure. Dell Technologies offers servers, storage, and client devices to run your models on-premises along with professional services to help you choose the GenAI path that’s right for your business.

Learn more about how Dell Generative AI Solutions.

1 From Potential to Profit with GenAI, Boston Consulting Group, Jan. 2024
2 The State of Generative AI in the Enterprise, Deloitte, Jan. 2024

Artificial Intelligence


Read More from This Article: Avoid generative AI malaise to innovate and build business value
Source: News

Category: NewsApril 1, 2024
Tags: art

Post navigation

PreviousPrevious post:SharePoint PremiumがCIOにとっての厳しい挑戦を浮かび上がらせるNextNext post:8 strategies for accelerating IT modernization

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.