Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

At a loss for data project ROI? Evaluate it like a product

In 2006, British mathematician Clive Humby proclaimed, “Data is the new oil.”

Humby had bona fides to make that claim. He and his wife, Edwinna Dunn, own Dunnhumby, a global customer data science company that helped Tesco create its Clubcard, the world’s first supermarket loyalty card. The program gave the British retailer unprecedented insight into its customers and their buying habits.

Today, Doug Laney, innovation fellow of data and analytics strategy at West Monroe, disputes Humby’s assertion on a technicality: “When you use a drop of oil, you can only use it one way at a time,” Laney says. “When you do use it, it gets used up. And when you use a drop of oil, it doesn’t create more oil. Information or data is very different.”

Data doesn’t deplete when you use it. It can be used multiple ways simultaneously. And using data typically creates more data.

“Data is what economists would call a non-rival risk, non-depleting progenitor of assets,” Laney says.

Whether or not the oil metaphor is apt, what is not in dispute is that data has the potential to unlock enormous value for organizations that can leverage it properly. Laney, a former distinguished VP analyst at Gartner, studied how companies used their data when he was with the research firm.

“We found that companies that treat data more as an asset have a market-to-book value ratio that’s nearly two times higher than the market average. And companies that sell data products or data derivatives of some kind have a 3x market-to-book value ratio,” he says.

Laney notes that a more recent Gartner study of chief data officer success found CDOs were 3.5 times more likely to achieve success in their role when they met data monetization initiatives, versus only 1.7 times more likely when they demonstrated ROI on their BI or data analytics investments.

Increasing numbers of West Monroe clients are asking the firm to help them through data monetization exercises: ideation, testing the feasibility of components, and laying out a roadmap for creating data products, Laney says.

That doesn’t mean all data products need to be focused on selling data. Many valuable data products support organizations’ operations. Supply chain analytics and digital twins are some key examples.

“Data monetization can take a lot of different forms and formats,” Laney says. “The industry is starting to recognize that. They’re starting to get outside their own heads when it comes to thinking about data monetization as being more than just selling data.”

So, while not every enterprise will productize their data assets for consumption outside the organization, chief data officers would be wise to evaluate each data initiative as if it were, by evaluating its costs of creation and maintenance and coming up with a framework for ascertaining whether the revenue it generates, however indirectly, has been worth the effort. 

Establishing the net value of data operations

Of course, accurately valuing data assets is easier said than done. If a data product is sold directly, the calculation is relatively simple. But what if it is a support tool? How do you value it then?

That question recently sent data intelligence company Collibra on a journey to create a process for assessing the value of its data products, including tools that don’t directly create revenue themselves.

Jay Militscher, head of the data office, Collibra

Jay Militscher, head of the data office, Collibra

Collibra

“At Collibra, data is treated as a product, not just an asset,” says Jay Militscher, head of the data office at Collibra. “It could be a dataset, an ML model, or a report. Product-based thinking means that there’s an owner in the business, managing it strategically with an ROI attitude. Data valuation is all about converting data to value in a deliberate and strategic way. Value comes in the form of either directly selling data and analytics right into the market or changing the economics of how you do work processes: efficiency, speed, identifying an opportunity, stuff like that. All companies, we believe, have to address this data monetization and valuation topic at some point, if they’re not already.”

Laney agrees, noting that many companies have struggled with their data monetization efforts over the years because they have failed to take a product management approach.

“[Those companies] have been kind of dabbling in it or are doing one-off things,” he says. “The companies that are doing this well are taking a really defined product management approach to conceiving and planning new ways to generate new value streams from data, to identifying and developing markets among partners and others throughout their extended business ecosystem, coordinating properly with IT, marketing, finance, legal, and other product lines and management groups to execute on these data monetization initiatives.”

Collibra has created an eight-step process for creating data products to help it focus on the product management approach. The process begins with identifying a business need and defining the data product owner and culminates with monitoring the data product in production.

One of the first big projects Militscher’s team undertook at Collibra was the Data Intelligence Usage Dashboard, which helps Collibra pre-sales engineers understand how customer adoption evolves during a trial. Used correctly, it can improve a customer’s user experience and satisfaction during a proof-of-concept, but while the dashboard seemed to have a lot of success, the monitoring step of the process showed that usage was not equally spread across all pre-sales engineers. Some were using it heavily and others barely touched it.

“It made us wonder, Is this data product really valuable? Was it worth the cost and the effort that we put in this? Imagine if we could estimate those revenues and costs at the start of the project and reevaluate those estimations with real numbers one year later,” says Alexandre t’Kint, data scientist at Collibra.

With the help of intern Sarvenaz Rahmati, t’Kint created a process to evaluate the costs that went into creating the Data Intelligence Usage Dashboard, the revenue (both tangible and intangible) that it generates, and ultimately what the dashboard’s net value is.

Alexandre t’Kint, data scientist, Collibra

Alexandre t’Kint, data scientist, Collibra

Collibra

First, t’Kint and Rahmati had to identify all the resources the Data Intelligence Usage Dashboard uses to determine its costs. The dashboard stores raw data in Amazon S3, uses Amazon EC2 for cloud computing, and Amazon Redshift for data warehousing. They then needed to determine what they call “the creation cost,” the cost for all people involved in creating the Data Intelligence Usage Dashboard, which included a data scientist, a data engineer, a pre-sales engineer, and two senior managers.

Maintenance cost, what it takes to modify a data product after delivery, is a third important factor in a product’s overall cost. t’Kint notes that the Data Intelligence Usage Dashboard has rarely failed, so its maintenance cost has been minimal.

Finally, t’Kint’s cost-assessment process required ascertaining any license costs involved. The dashboard required Collibra buy a Tableau license for all the people who would create or view the dashboard.

With costs assessed, t’Kint and Rahmati then turned to evaluate revenue. This is challenging if a data product is not a direct revenue generator. For the dashboard project, t’Kint says they considered looking at the number of views on the data product or calculating the value of deals closed per user of the data product. Ultimately, they decided to survey the sales engineers to determine how much they valued the dashboard. Based on that survey, they estimated that 4% of the revenue from closed deals over a period of six months could be attributed to the existence of the dashboard.

A framework for data project ROI

According to t’Kint, the process of establishing a net value of operations for the Data Intelligence Usage Dashboard helped Collibra determine that, yes, the project had created net positive value. It also helped the team identify next steps to increase that value.

“The value was already positive, but then we wanted the value to be as great as possible,” t’Kint says. “Our follow-up project was trying to increase the usage of these insights even more.”

The data office worked with Collibra’s IT department to embed the dashboard’s insights into Salesforce, where the company’s pre-sales engineers live all day.

“If you think about the consumption of data products, in the past, people had to first go to the dashboard tool, then consume the data, take a decision and finally perform an action,” t’Kint says. “By embedding these insights where people live, you remove one of the three steps and bring the insights to them.”

Ultimately, t’Kint says this process will help Collibra be even more deliberate and strategic about the creation of new data products over time. He recommends other data leaders adopt a similar approach.

“You need to have a sense of ROI, beginning with a sense of what it costs to product it and being deliberate about measuring what you expect to reap from it is really the starting point,” he says. “Your measures might include how the product is going to improve the way you work as the first step. You can interview users about how much quicker their workflow is because of the data products. Estimating the value upfront is going to be the hardest part, but don’t block on that.”


Read More from This Article: At a loss for data project ROI? Evaluate it like a product
Source: News

Category: NewsApril 18, 2022
Tags: art

Post navigation

PreviousPrevious post:RBI and the Importance of Integrated Threat ProtectionNextNext post:Royal National Lifeboat Institution CIO talks COVID-19 response, data, and mental health

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.