Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

Are enterprises ready to adopt AI at scale?

Whether it’s a financial services firm looking to build a personalized virtual assistant or an insurance company in need of ML models capable of identifying potential fraud, artificial intelligence (AI) is primed to transform nearly every industry. In fact, a recent Cloudera survey found that 88% of IT leaders said their organization is currently using AI in some way.

AI’s ability to automate repetitive tasks leads to significant time savings on processes related to content creation, data analysis, and customer experience, freeing employees to work on more complex, creative issues. But adoption isn’t always straightforward. The path to achieving AI at scale is paved with myriad challenges: data quality and availability, deployment, and integration with existing systems among them.

To overcome those challenges and successfully scale AI enterprise-wide, organizations must create a modern data architecture leveraging a mix of technologies, capabilities, and approaches including data lakehouses, data fabric, and data mesh.

Barriers to AI at scale

Despite so many organizations investing in AI, the reality is that the value derived from those solutions has been limited. The factors influencing this success vary and aren’t just confined to purely technical limitations. There’s also an element of employee buy-in that can cause AI adoption to lag behind, or even stall out altogether. Cloudera’s survey revealed that 39% of IT leaders who have already implemented AI in some way said that only some or almost none of their employees currently use any kind of AI tools. So, even if projects are being implemented widely, in more than one-third of cases, the employees simply aren’t using it.

Another challenge here stems from the existing architecture within these organizations. They may implement AI, but the data architecture they currently have is not equipped, or able, to scale with the huge volumes of data that power AI and analytics. This requires greater flexibility in systems to better manage data storage and ensure quality is maintained as data is fed into new AI models.

As data is moved between environments, fed into ML models, or leveraged in advanced analytics, considerations around things like security and compliance are top of mind for many. In fact, among surveyed leaders, 74% identified security and compliance risks surrounding AI as one of the biggest barriers to adoption. These IT leaders are faced with a simultaneous need for a data architecture that can support rapid AI scaling and prepare users for an evolving regulatory landscape.

This challenge is particularly front and center in financial services with the arrival of new regulations and policies like the Digital Operational Resilience Act (DORA), which puts strict ICT risk management and security guidelines in place for firms in the European Union. Rapidly evolving regulatory requirements mean organizations need to ensure they have total control and visibility into their data, which requires a modern approach to data architecture.

Building a strong, modern, foundation

But what goes into a modern data architecture? While every platform is different, there are three key elements organizations should look out for data lakehouses, data mesh, and data fabric. Each of these accounts for a modern data architecture approach to data management that can help adhere to security requirements, break through barriers like data silos and deliver stronger outcomes with AI adoption enterprise-wide.

Before we go further, let’s quickly define what we mean by each of these terms. A data mesh is a set of best practices for managing data in a decentralized organization, allowing for easy sharing of data products and a self-service approach to data management. A data fabric is a series of cooperating technologies that help create a unified view of data from disparate systems and services across the organization. Then there’s the data lakehouse—an analytics system that allows data to be processed, analyzed, and stored in both structured and unstructured forms.

With AI models demanding vast amounts of structured and unstructured data for training, data lakehouses offer a highly flexible approach that is ideally suited to support them at scale. A data mesh delivers greater ownership and governance to the IT team members who work closest to the data in question. Data fabric presents an effective means of unifying data architecture, making data seamlessly connected and accessible, leveraging a single layer of abstraction.

Those benefits are widely understood, with 67% of IT leaders surveyed by Cloudera noting that data lakehouses reduce the complexity of data pipelines. Similarly, both data mesh and data fabric have gained significant attention among IT leaders in recent years, with 54% and 48% of respondents respectively stating they planned to have those components in place by the end of 2024.

Whatever the end goal of an organization’s AI adoption is, its success can be traced back to the foundational elements of IT and data architecture that support it. And the results for those who embrace a modern data architecture speak for themselves.

For example, Cloudera customer OCBC Bank leveraged Cloudera machine learning and a powerful data lakehouse to develop personalized recommendations and insights that can be pushed to customers through the bank’s mobile app. This was made possible by the hybrid data platform OCBC Bank utilized, enabling them to fast-track AI deployment and provide a major return on investment.

With a strong foundation of modern data architecture, IT leaders can move AI initiatives forward, scale them over time, and generate more value for their business.

To learn more about how enterprises can prepare their environments for AI, click here.


Read More from This Article: Are enterprises ready to adopt AI at scale?
Source: News

Category: NewsOctober 30, 2024
Tags: art

Post navigation

PreviousPrevious post:米国ITリーダーたちがAI規制に求めるものNextNext post:La Oficina Europea de Patentes destinará 160 millones al desarrollo y mantenimiento de aplicaciones en el próximo lustro

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.