Eighteen months ago, Mr. Cooper launched an intelligent recommendation system for its customer service agents to suggest solutions to customer problems. The company, formerly known as Nationstar, is the largest non-bank mortgage provider in the U.S., with 3.8 million customers, so the project was viewed as a high-profile cost-saver for the company. It took nine months to figure out that the agents weren’t using it, says CIO Sridhar Sharma. And it took another six months to figure out why.
The recommendations the system was offering weren’t relevant, Sharma found, but the problem wasn’t in the machine learning algorithms. Instead, the company had relied on training data based on technical descriptions of customer problems rather than how customers would describe them in their own words.
To read this article in full, please click here
(Insider Story)
Read More from This Article: 6 reasons why AI projects fail
Source: News