Four years ago, Google was faced with a conundrum: if all its users hit its voice recognition services for three minutes a day, the company would need to double the number of data centers just to handle all of the requests to the machine learning system powering those services.
Rather than buy a bunch of new real estate and servers just for that purpose, the company embarked on a journey to create dedicated hardware for running machine- learning applications like voice recognition.
The result was the Tensor Processing Unit (TPU), a chip that is designed to accelerate the inference stage of deep neural networks. Google published a paper on Wednesday laying out the performance gains the company saw over comparable CPUs and GPUs, both in terms of raw power and the performance per watt of power consumed.
To read this article in full or to leave a comment, please click here
Source: News Feed