Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

4 key AI risks to address when contracting services or products

With the rapid rise of AI, especially GenAI, clients are evaluating risks from partner or vendor use of AI. CIOs and organizations are advised to consider how these risks may impact their operations and security and create contractual terms to address them. Specific areas of concern for CIOs and IT organizations are how a vendor uses its data, whether its data will be used in training public models, how data is protected, data access, results bias, and risks of hallucination and plagiarism. Clients wish to understand and mitigate the additional risk that AI may bring from their vendor and partner relationships.

CIOs and organizations recognizing this risk (and following recommendations of research firms) are now embedding specific requirements in their vendor and partner contracts. They are demanding clear assurances on how AI-related risks are mitigated. These clients expect responsive, meaningful information about the safeguards in place, particularly around data use, adherence to data protection practices, and use cases that impact them. For vendors and partners, meeting these demands requires preparing comprehensive, transparent contractual responses that are accurate and will not delay contracting.

Also, we are witnessing, on both the vendor side and client side, frustration with how these clauses are delaying contracting itself as both client and vendor legal teams struggle over them. To address this, vendors and clients need to develop a model for how they want to address, communicate, and understand AI risk.

To help simplify the process and provide a leg up for developing AI risk clauses in contracts (for both clients and vendors), this overview covers the key elements that are essential for drafting and responding to AI risk provisions. On both the vendor and client side, standardized, flexible language should be developed immediately with the assistance of legal, because, even if a vendor or partner hasn’t had to respond to an AI clause in a contract yet, it will.

Defining AI’s purpose and ensuring transparency

Clients need to understand how AI will be used within their contracted services or product. To address this, vendors need to start by defining AI’s role in the service(s) or product provided, highlighting both its purpose and the potential benefits for the client. For instance, AI might be used to support data analysis, improve operational efficiency, or streamline routine tasks — all areas that can drive value when clearly communicated.

A well-defined purpose of AI helps clarify that AI’s role is not arbitrary and establishes transparency, allowing clients to understand exactly how it aligns with their goals. Additionally, this section should cover any limitations around the use of AI (i.e., how it will not be used).

Use of client data

A key (if not primary) client concern is how its data will be used by a vendor or partner. While data usage should be stated as part of a vendor’s existing, standard, data protection policy, the concern is heightened due to some unique aspects of GenAI. In this regard, the contract should outline the vendor’s current practices regarding data security and privacy as well as adherence to regulations such as GDPR, CCPA, and other relevant data protection laws. A vendor should already have defined client data policies. GenAI should be a superset or expansion on existing vendor data protection policies. Clear guidelines around data handling practices help ensure that client data remains secure and protected from unintended uses.

Clients are particularly concerned about their data being used to train AI models, as well as its visibility to other clients. This is a key risk clients want addressed. One practice involves stating a prohibition on using non-anonymized client data for AI training without prior consent. Another is stating that client data is not used in training. Addressing these details upfront not only enhances trust but also aligns with industry standards on ethical data management.

Establishing an AI usage policy and human oversight

Vendors having a formal AI usage policy gives clients clarity around the types of AI technologies being used. This policy should cover specific provisions on how AI may be used in generating client-related insights. For example, there should be provisions explaining how AI is used internally and applied to client-specific data to answer client needs.

Incorporating human oversight into AI applications provides an additional safeguard. By establishing that all AI operations will undergo human review, vendors can assure clients that automated processes will be validated by human personnel. This not only mitigates risks but also reinforces quality control, especially in contexts where AI is used to support data analysis or insights. Having a human expert review and supervise these outputs helps ensure that client standards and expectations are met, reducing the likelihood of unintentional errors or oversights from automated processes. Vendors should make clear what, if any, oversight is being provided and where.

Risk management and confidentiality

Effective risk management is crucial for any vendor offering AI as part of its product, and clients want to know that measures are in place to handle potential AI-related risks. The contract should outline risk management strategies, including regular audits of AI systems, impact assessments for high-stakes AI use cases, mitigation of AI drift, and incident response plans for data breaches or misuse. Clients will feel reassured knowing that the vendor has measures in place to address issues before they impact service quality or data security.

Confidentiality agreements also play a critical role in safeguarding client data. Reinforce the organization’s commitment to data privacy by referencing any confidentiality agreements that protect client information from unauthorized disclosure. By including terms that limit access to sensitive client data for AI systems or other technologies, clients are reassured that their data will be handled in line with privacy expectations. These agreements signal that sensitive information will not be disclosed or processed by AI without prior client consent. These agreements are typically in place for data handling even outside the scope of AI.

In any AI-related contract, it is essential to ensure that the client or customer also has a robust AI policy in place. The terms and conditions of the contract should not be merely symbolic; they must be supported by concrete policies and controls on the customer’s side. This ensures that any AI-related obligations or restrictions are enforceable and aligned with the client’s operational standards, helping to uphold the integrity of the contract and the responsible use of AI.

Conclusion

By incorporating these four elements into your AI-related contracts, vendors can address client concerns, safeguard data, and demonstrate your organization’s commitment to responsible AI use. By proactively protecting clients from AI-related risks, companies can build a foundation of trust and align themselves with best practices for ethical, transparent, and compliant AI deployment.

Learn more about IDC’s research for technology leaders OR subscribe today to receive industry-leading research directly to your inbox.

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory services, and events for the technology markets. IDC is a wholly owned subsidiary of International Data Group (IDG Inc.), the world’s leading tech media, data, and marketing services company. Recently voted Analyst Firm of the Year for the third consecutive time, IDC’s Technology Leader Solutions provide you with expert guidance backed by our industry-leading research and advisory services, robust leadership and development programs, and best-in-class benchmarking and sourcing intelligence data from the industry’s most experienced advisors. Contact us today to learn more.

Daniel Saroff is group vice president of consulting and research at IDC, where he is a senior practitioner in the end-user consulting practice. This practice provides support to boards, business leaders, and technology executives in their efforts to architect, benchmark, and optimize their organization’s information technology. IDC’s end-user consulting practice utilizes IDC’s extensive international IT data library, robust research base, and tailored consulting solutions to deliver unique business value through IT acceleration, performance management, cost optimization, and contextualized benchmarking capabilities.


Read More from This Article: 4 key AI risks to address when contracting services or products
Source: News

Category: NewsDecember 12, 2024
Tags: art

Post navigation

PreviousPrevious post:Is the cloud seducing software giants into the enemy lair?NextNext post:Kazakhstan’s Carpet CCTV: Transforming public safety through innovation

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.