Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

3 steps to eliminate shadow AI

Imagine a highly competitive market where the urgency to innovate is high. A product manager is under immense pressure to deliver complex customer insights that could pivot the company’s product strategy. Frustrated by the lack of generative AI tools, he discovers a free online tool that analyzes his data and generates the report he needs in a fraction of the usual time. His manager praises his efficiency and the depth and breadth of insights he produces.

The accolades are short-lived. A routine audit uncovers severe compliance issues with how the tool accesses and stores data. It also flags a potential data leak, undermining what was initially seen as a breakthrough innovation.

Similar events have unfolded in multiple industries, and that’s not surprising given that 93% of IT and data decision-makers globally report that their organizations already use generative AI in some capacity. These same decision-makers identify a host of challenges in implementing generative AI, so chances are that a significant portion of use is “unsanctioned.” In fact, over half the AI users in a recent study say they’re “reluctant to admit” using AI because of concerns that using it makes “them look replaceable.” The familiar narrative illustrates the double-edged sword of “shadow AI”—technologies used to accomplish AI-powered tasks without corporate approval or oversight, bringing quick wins but potentially exposing organizations to significant risks. 

The allure of generative AI

As AI theorist Eliezer Yudkowsky wrote, “By far the greatest danger of Artificial Intelligence is that people conclude too early that they understand it.” While his statement long predates the incredible generative AI explosion of 2023, his point is even more relevant in the case of free online generative AI tools. Unsanctioned by IT, these tools offer ease of access and use that can cloud the judgment of even well-intentioned employees to the broader implications of their choices.

The perils of unsanctioned generative AI

The added risks of shadow generative AI are specific and tangible and can threaten organizations’ integrity and security. Unmonitored AI tools can lead to decisions or actions that undermine regulatory and corporate compliance measures, particularly in sectors where data handling and processing are tightly regulated, such as finance and healthcare.

Generative AI models can perpetuate and amplify biases in training data when constructing output. Models can produce material that may infringe on copyrights. If not properly trained, these models can replicate code that may violate licensing terms. If the code isn’t appropriately tested and validated, the software in which it’s embedded may be unstable or error-prone, presenting long-term maintenance issues and costs. The generated code could contain undetected malicious code that further risks the severe consequences of a data breach and system downtime.  

Ultimately, mismanaged AI interactions, especially in customer-facing applications, can lead to regulatory and public relations issues if they violate laws or lead to poor customer experiences or ethical concerns, such as when bias taints AI outputs. It’s up to leaders to wrap the guardrails around shadow generative AI to prevent the “pros” from being “cons” that expose their organizations and employees to unintended consequences.  

How C-suite executives can bridge the chasm  

With “78% of AI users bringing their own AI tools to work,” a growing chasm exists between what employees want and what IT and AI teams can safely provide. A study of 700 IT and data decision-makers sponsored by Iron Mountain indicates that 36% rank “protecting and managing the data and other assets created by generative AI” among the top challenges they face. “Creating and enforcing generative AI policies” closely follows at 35%. Following are three recommendations for encouraging innovation while maintaining security, compliance, ethics, and governance standards.

Sync your AI, security, and asset governance strategies

To fully leverage the benefits of AI while maintaining security and compliance, it’s crucial to integrate AI governance with your overall organizational strategy. Examples of initial steps:

  • Communicate the role of AI in achieving your strategic objectives, ensuring alignment with business goals and operational needs.
  • Establish comprehensive guidelines that address ethical considerations, data privacy, and regulatory compliance to ensure responsible AI deployment.
  • Create committees or roles specifically responsible for overseeing AI deployments across the organization, including those initiated by individual departments.
  • Form dedicated governance structures to monitor, evaluate, and guide AI initiatives, ensuring consistent oversight and accountability.
  • Integrate AI-specific security measures into existing IT frameworks to mitigate risks and safeguard against potential threats.

Foster a culture of responsible AI use

A recent study shows that “65% of respondents admit they lack education around generative AI.” Promoting responsible AI use within your organization involves creating a supportive environment and clear guidelines to ensure ethical and safe practices. Here are essential steps to foster such a culture:

  • Involve generative AI users and functional experts in developing written guidelines and protocols for various departments–such as marketing, engineering, human resources, patient care, and customer-facing decision processes–to ensure appropriate and ethical use in specific environments.
  • Provide end-user training on using enterprise-grade applications and platforms with integrated generative AI. This will increase data value while safeguarding against data breaches.
  • Establish continuous training emphasizing ethical considerations and potential risks.
  • Provide sandboxes for safe testing of AI tools and applications and appropriate policies and guardrails for experimentation. 

Leverage AI for strategic advantage

Using AI effectively can provide a significant competitive edge by creating new value from your data. These steps can help: 

  • Empower employees to experiment with integrated generative AI in a secure environment. This can improve productivity and job satisfaction by eliminating monotony in their day-to-day activities and encouraging them to recommend additional uses. 
  • Maintain a comprehensive catalog of AI tools used across the organization, managed by IT or an AI leader, to streamline the integration and management of valuable applications.
  • Review and integrate successful experimental AI projects into the company’s main operational framework.
  • Evaluate the performance of AI initiatives to gather insights, refine strategies, and ensure that AI investments drive desired business outcomes.

Conclusion

For C-suite executives, shadow AI presents formidable challenges but also significant opportunities. By understanding its dual nature, executives can formulate strategies that harness the benefits of decentralized AI innovations while mitigating the associated risks. The key lies in creating a balanced environment where innovation is nurtured and governance is enforced, ultimately steering the company toward sustained growth and success in an AI-driven world.

Learn more in this paper about shadow AI and options you can take to protect your enterprise.
  
Visit our Iron Mountain InSight® Digital Experience Platform (DXP) page to see how you can use secure generative AI built into the platform to help you access, manage, and govern your physical and digital information.


Read More from This Article: 3 steps to eliminate shadow AI
Source: News

Category: NewsSeptember 12, 2024
Tags: art

Post navigation

PreviousPrevious post:Zoho adds AI and ML capabilities in Zoho Analytics 6.0NextNext post:From charred scrolls to customer sentiment: How AI helps you monetize your unstructured data

Related posts

Barb Wixom and MIT CISR on managing data like a product
May 30, 2025
Avery Dennison takes culture-first approach to AI transformation
May 30, 2025
The agentic AI assist Stanford University cancer care staff needed
May 30, 2025
Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
May 30, 2025
“AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
May 30, 2025
“ROI는 어디에?” AI 도입을 재고하게 만드는 실패 사례
May 30, 2025
Recent Posts
  • Barb Wixom and MIT CISR on managing data like a product
  • Avery Dennison takes culture-first approach to AI transformation
  • The agentic AI assist Stanford University cancer care staff needed
  • Los desafíos de la era de la ‘IA en todas partes’, a fondo en Data & AI Summit 2025
  • “AI 비서가 팀 단위로 지원하는 효과”···퍼플렉시티, AI 프로젝트 10분 완성 도구 ‘랩스’ 출시
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.