Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

3 early lessons with generative AI

Generative AI products like ChatGPT have introduced a new era of competition to almost every industry. As business leaders seek to quickly adopt ChatGPT and other products like it, they are shuffling through dozens, if not hundreds, of use cases being proposed.

The bottom line: The companies that strike the right balance of risk and innovation when adopting generative AI will win. The question is, how do you find the right balance for your business? Here are the lessons we’ve learned so far from our approach.

1. Don’t wait to start experimenting with generative AI

The sooner a company starts developing a framework for adopting generative AI, the sooner the use cases can be rolled out and start showing ROI. Employees are excited about the potential implications this will have on productivity and efficiency.

However, issues can arise when this excitement leads to a scenario where employees in various departments are using generative AI tools with no coordination and little-to-no oversight. Not only is this risky—siloed employees may not be considering the risk and liability being introduced to the company—but also inefficient, since there are bound to be redundancies.

Our biggest initial to-do was getting a handle on how employees are using generative AI, determining what the “acceptable” and “too-risky” uses are, and finding a balance between efficient adoption and proper vetting.

We now have a taskforce that acts as the collection point for all of our uses of generative AI, making sure the lessons learned from them are being routed into one location. This has led to more informed decision-making as well as better knowledge of the tools being used by our team to know which ones are adding the most value.

2. Assign a multidisciplinary team to prioritize and communicate

Our research shows that high-performing, digitally enabled organizations are already moving away from hierarchical organizational structures. Instead, their structures are flexible and adaptable to enable collaboration. This encourages and enables individuals to work and learn across different job functions more easily, and we have really leaned into this as we create a framework that will be applied across the entire company.

Determining your path toward generative AI adoption does not just live with one department—whether that’s IT, risk & compliance, or innovation. Instead, develop a multidisciplinary team that gives every department a seat at the table to ensure that potential use cases are viewed from all angles.

Does financial automation require insight from the IT department? How do changes in marketing processes impact business development? By developing a 360° view of the pros and cons for each possible use, you are set up to make smart decisions in a timely manner.

3. Treat generative AI with a product mindset

Similar to many product development initiatives, our approach to implementing generative AI starts with use cases and proof of concepts. Our teams have been asked to identify what their most essential uses for this technology would be, including how it increases efficiency, how it impacts customer experience and where the potential pitfalls are. Then, our taskforce chooses which use cases to greenlight on a trial basis.

Once a use case has been given tentative approval, we develop workstreams to properly oversee each implementation and collect useful data and qualitative feedback. This testing and learning is critical to make informed decisions regarding what to greenlight next.

In the long term, as these proofs of concept begin to show results, we can pivot these successes into standard operating procedures and apply the uses more efficiently on more projects.

Showcasing ROI can be difficult when the best-case scenario is “nothing bad happened.” We view it as a good sign if, as we start incorporating generative AI into day-to-day processes, we do so without compromising sensitive data or receiving pushback from key stakeholders.

But this is not as helpful long-term, so we also focus on the ROI that each successful use case provides: how has client satisfaction/engagement been impacted, where have efficiencies been realized, how have costs been reduced, etc.

Conclusion: Find your own balance between risk and agility

Generative AI is just the beginning—we’re in an era where opportunities will continue to emerge for companies to embrace new, cutting-edge technology in ways that will revolutionize their work. And the speed at which any company chooses to adopt the newest tools will depend on their appetite for risk versus their desire for agility. Being first to innovate and first to develop a more efficient way of doing business is great, but is it worth the reputational risk if something goes awry? To learn more, visit West Monroe

Artificial Intelligence, Machine Learning
Read More from This Article: 3 early lessons with generative AI
Source: News

Category: NewsMay 24, 2023
Tags: art

Post navigation

PreviousPrevious post:Register now: GenAI, risk & the future of securityNextNext post:IT as a catalyst for business transformation: Strategies for CIOs

Related posts

휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
May 9, 2025
Epicor expands AI offerings, launches new green initiative
May 9, 2025
MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
May 9, 2025
오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
May 9, 2025
SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Recent Posts
  • 휴먼컨설팅그룹, HR 솔루션 ‘휴넬’ 업그레이드 발표
  • Epicor expands AI offerings, launches new green initiative
  • MS도 합류··· 구글의 A2A 프로토콜, AI 에이전트 분야의 공용어 될까?
  • 오픈AI, 아시아 4국에 데이터 레지던시 도입··· 한국 기업 데이터는 한국 서버에 저장
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.