Skip to content
Tiatra, LLCTiatra, LLC
Tiatra, LLC
Information Technology Solutions for Washington, DC Government Agencies
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact
 
  • Home
  • About Us
  • Services
    • IT Engineering and Support
    • Software Development
    • Information Assurance and Testing
    • Project and Program Management
  • Clients & Partners
  • Careers
  • News
  • Contact

ワシントン州キング郡、AIを活用し薬物過剰摂取による死亡を減らす

ワシントン州キング郡検死官事務所は、全米各地の多くの公衆衛生機関と同様に、薬物過剰摂取による死亡を追跡し、リスクのある集団に介入策を講じ、人命救助につなげている。

キング郡では、ここ数年、致死的な薬物過剰摂取の報告は主に紙と人手によるプロセスで行われており、その情報は州および連邦政府機関と共有されている。フェンタニルやその他の薬物関連死がシアトル地域で急増している近年、致死的な薬物過剰摂取を集計し報告するこの面倒なプロセスには膨大な時間がかかっていた。

郡庁所在地であるシアトルでは、2022年に550人以上の薬物過剰摂取による死亡が報告され、前年に比べ82%増加した。2023年には、キング郡では約1,300人の薬物過剰摂取による死亡が報告された。

以前は、薬物過剰摂取による死亡を報告する際、検視官が現場で見つかった注射針、パイプ、錠剤、未確認の物質、その他の証拠などの要因を記載した、構造化されていない記述形式の報告書を作成していた。多くの場合、そのプロセスには、毒物検査報告書などの追加書類が関係していた。

その後、人間の要約者が複数ページにわたる文書を読み、関連情報を抜き出し、州および米国疾病管理予防センター(CDC)で使用されるフォームに再入力する。CDCの州非意図的薬物過剰摂取報告システム(SUDORS)は、致死的な薬物過剰摂取に関する全国データベースであり、関与した薬物や薬物入手経路などの状況をより深く理解するために使用される。

キング郡検死官事務所の法医学疫学者、ヤン・マーティン氏は、データを収集し分類する究極的な目的は、致死的な薬物過剰摂取の件数が多い地域への介入策を策定することにあると語る。介入策には、フェンタニルに関する特定の集団への教育、新しい薬物治療センターの開設、オピオイドの作用を軽減する薬であるナロキソンの特定地域への配布など、さまざまな形がある。

時間のかかるプロセス

しかし、この手作業による報告プロセスにはあまりにも時間がかかり、キング郡の対応能力に影響を与えていた。郡の職員は、200件の薬物過剰摂取による死亡事例に関連する書類を印刷しスキャンするのに約10~12時間かかり、さらに書類からデータを抽出し、何千もの項目に記入する報告フォームを作成するのに200時間かかった。

CDCと米国保健社会福祉省からの資金援助を受け、検視官事務所はキング郡情報技術局と協力し、自然言語処理(NLP)と機械学習(ML)を使用して、薬物死亡報告に必要なデータ抽出とフォーム記入を自動化する一連のツールを開発した。

「このプロジェクトは、これらのプログラムにおけるボトルネックの問題、つまり、効率性を高める上で妨げとなっている要因に対処するものである」とマーティン氏は言う。

段階的な導入

新しいプロセスは 3 つのステップから成る。薬物過剰摂取による死亡事故後に提出される複数ページの事故報告書および薬物検査報告書は、まずスキャンされ、光学式文字認識(OCR)を使用して情報が抽出される。

第2段階では、キング郡IT局が作成・訓練したNLPおよびMLモデルが、これらのデジタル化された報告書から関連情報を抽出する。MLモデルには、古典的なMLとディープラーニングが含まれ、報告書の記述テキストからカテゴリーラベルを予測する。

キング郡の NLP モデルは、高度な大規模言語モデル(LLM)である BERT をベースとしている。IT 部門では、Hugging Face のオンライン AI サービスと、ディープラーニングモデルを構築するための Python フレームワークである PyTorch も使用している。また、ソリューションの一部として、データ分析には Azure Databricks も採用されている。

「このプロジェクトは、非常に古典的な問題、つまり、非常に手作業の多いプロセスに、すぐに利用できる古典的な自動化技術の一種を適用することに焦点を当てている」とキング郡IT局のデータ戦略・運用担当ディレクター、グレース・プレイヤポンピサン氏は語る。「そして、本当に素晴らしいのは、機械学習機能により、より実験的な側面を追加することだ。

このプロジェクトにおける機械学習の部分は、レポートのデジタル化作業にさらなる自動化を加えるための概念実証として始まったと彼女は付け加える。

「私たちは、『すでに利用可能な新しいツールや新しいテクノロジーを使って、すでに効率的なプロセスをさらに効率化するために、すでに持っているデータを利用できる機会があるだろうか』と自問した」と彼女は言う。

プロジェクトの第三段階として、IT部門は、州のアブストラクターがレポートフォームを自動入力できる2つのフロントエンドユーザーインターフェースを作成した。また、NLPと機械学習によって行われた作業を確認することも可能だ。最初のインターフェースでは、ユーザーはテキストの記述を入力でき、NLPとMLモデルが予測フィールドラベルと予測の信頼度推定値を提供する。

2つ目のインターフェースは、JavaScriptコードを使用してSUDORSデータベースへのデータ入力の自動化に重点を置いている。ワシントン州保健省と全米12の郡や州がこのインターフェースの使用に関心を示している、とマーティン氏は言う。

プロジェクトの次の段階では、ITチームは、最初のパイロット版で7つのデータ入力フィールドを対象としていたものを、1,000以上のデータ入力フィールドのカテゴリーラベルを予測するセキュアなAIモデルを使用することを計画している。もう1つの目標は、このテクノロジーを使用して、薬物過剰摂取を全米暴力死報告システム(NVDRS)に報告することである。

このプロジェクトにより、キング郡は2024年のCIOアワード(ITリーダーシップとイノベーション部門)を受賞した。

的を絞った介入

すべての要素が組み合わさった結果、キング郡では、記述レポートのデジタル化とデータ入力の自動化により、大幅な時間短縮を実現した。マーティン氏によると、200件の過剰摂取レポートをデジタル化するためにかかる時間は、以前は10~12時間だったが、現在は20分で済むという。また、SUDORSやその他のフォームへの記入時間も約30%短縮された。

報告書の処理にかかる時間が短縮されたことで、薬物過剰摂取が急増した場合にも迅速な対応が可能になったと、プレイヤポンピサン氏は言う。地理空間マッピングと組み合わせることで、より最新の情報を得られるようになったため、公衆衛生専門家は薬物過剰摂取が増加している地域に重点的に取り組むことができるようになった。

「予防的介入により、健康状態を改善することができる」と彼女は付け加える。「このデータをリアルタイムで重ね合わせることにより、適切なリソースを配置するだけでなく、非常に具体的にターゲットを絞ることができる」


Read More from This Article: ワシントン州キング郡、AIを活用し薬物過剰摂取による死亡を減らす
Source: News

Category: NewsJuly 3, 2024
Tags: art

Post navigation

PreviousPrevious post:Il successo dell’IA dipende da una buona cultura dell’innovazioneNextNext post:VMware licensing and pricing hikes: What options do you have?

Related posts

SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
May 8, 2025
IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
May 8, 2025
Consejos para abordar la deuda técnica
May 8, 2025
Training data: The key to successful AI models
May 8, 2025
Bankinter acelera la integración de la IA en sus operaciones
May 8, 2025
The gen AI at Siemens Mobility making IT more accessible
May 8, 2025
Recent Posts
  • SAS supercharges Viya platform with AI agents, copilots, and synthetic data tools
  • IBM aims to set industry standard for enterprise AI with ITBench SaaS launch
  • Consejos para abordar la deuda técnica
  • Training data: The key to successful AI models
  • Bankinter acelera la integración de la IA en sus operaciones
Recent Comments
    Archives
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    Categories
    • News
    Meta
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Tiatra LLC.

    Tiatra, LLC, based in the Washington, DC metropolitan area, proudly serves federal government agencies, organizations that work with the government and other commercial businesses and organizations. Tiatra specializes in a broad range of information technology (IT) development and management services incorporating solid engineering, attention to client needs, and meeting or exceeding any security parameters required. Our small yet innovative company is structured with a full complement of the necessary technical experts, working with hands-on management, to provide a high level of service and competitive pricing for your systems and engineering requirements.

    Find us on:

    FacebookTwitterLinkedin

    Submitclear

    Tiatra, LLC
    Copyright 2016. All rights reserved.